Practical Book

INFORMATION
TECHNOLOGY

Contents

Term 1 Term 3
(LM Programming fundamentals (Bl CIY Databases and SQL
Introduction 1 Introduction 103
Unit 1.1 Problem solving 2 Unit 4.1 Select and sort columns 107
Unit 1.2 Procedures and functions in the Delphi Unit 4.2 Select columns and rows 113
runtime fibraries / Unit4.3 Calculated columns 126
Unit 1.3 Procedures and functions 14 Unit 4.4 Aggregate functions 133
Unit 1.4 User interface design 17 Unit 45 Data maintenance 139
Unit 1.5 Databases 27 Unit4.6 Querying two tables 144
Consolidation activity 40 Unit4.7 Database applications 147
Consolidation activity 152
Term 2
LICd Object-oriented programming Annexure A - Shneiderman’s ‘Eight Golden Rules
Introduction 53 of Interface Design’ 155
Unit 2.1 Defining a user-defined class o Annexure B - 10 usability heuristics for user
Unit2.2 Using the class 72 interface design 156
Consolidation activity 77
)) Annexure C — Using SQL in Delphi 158
EITEE) Two-dimensional arrays
Introduction 81 Annexure D - Component names
Unit 3.1 2D arrays 83 and description 161
Unit 3.2 2D arrays with data 90
, . Annexure E —The ASCII table 163
Unit 3.3 Application for 2D arrays 95
Consolidation activity 99 Annexure F - Enrichment 165
Glossary 180

Dear Learner

Welcome to the IT Practical Grade 12 textbook, and welcome to programming.

If this is your first time learning how to program, don’t worry. This textbook has been designed to teach anyone —
regardless of experience — how to program. If you follow along with all the examples then you will be an
experienced programmer who has written more than 50 programs by the end of this book.

Programming and programming languages, much like real languages, can only be learned through practice.
You cannot sit at home and learn to speak French from a textbook. In the same way, you cannot read this book
and hope to be a programmer at the end of it. Instead, you will need to write every bit of code and create every
program shown in this book. Even if all you do is follow the steps of the examples on your own computer, you
will learn how to write code. Once you have mastered the code, you will be able to comfortably use it in your
own programs.

For you to master programming, try to work through as many of the programs given to you. Each program has
been designed to both teach you new concepts and reinforce existing concepts. The book will start by teaching
you how to create simple programs. However, by the end of the book you will be creating useful programs and
fun games to play.

Programsmming is not only about knowing and using the programming language. There are also important
theoretical concepts that you will need to understand, and planning and problem-solving tools that you will need
to master. The best-coded program in the world will not be useful if it solves the wrong problem. This book has
therefore been divided into the following chapters:

e Chapter 1: Programming fundamentals

e Chapter 2: Object-oriented programming

e Chapter 3: Two-dimensional arrays

e Chapter 4: Databases and SQL

To give you the most opportunities to learn, this book will give three types of programming activities:

Examples
Examples will guide you through the creation of a program from start to finish. All you need to do with examples
is to follow the step-by-step guidance provided to you.

Example 1.2 Word Clock

Open the project in the Word Clock folder. We will now create the code for the Word
Clock. To do this, you need to:

1. Use a variable to store the current time.

2. Use functions to isolate the seconds, minutes and hours from the time.

3. Use a function to ensure that the hours only includes the numbers 1 to 12.
4. Determine whether the time of day is in the morning, afternoon or evening.
5. Write this information to the correct labels every second.

Once you are done, save your application in the folder 01 —Word Clock.
Solution

For this application, you only needed to use the timer’s OnTimer event. The code below
gives one possible method for solving this problem, although there are many other
solutions that would also work.

Guided activities

Guided activities have a program 438 Guided actvity 2.1

that you need to create on your You need to develop a multiplication table for a primary school learner as shown below:
. . 1x1=1 2x1=2
own. Your teacher will provide * *
ith the solution. Th Ixz=2 o 2x2sd
you .WI e solution. ese 1x323 2x326
solutions should be used as an You are required to create the 1 times and 2 times multiplication table. In the 1 times multiplication table, you only need
opportunity to compare your to find the product of 1 multiplied by a multiplier from 1 to 3. This is also true for the 2 times multiplication table.

program, an d to see where you Let's create an algorithm and flowchart for the problem.

may have made errors or left
something out.

ALGORITHM FLOWCHART

forI=1t02

begin
for J =1 to 3
begin

Activities
Activities are programs that your teacher can give to you as classroom activities or homework. With these
programs, you will only be assessed on how well your program works, so use your creativity to come up with
a solution!

& Acivity 1.1

Answer the following questions using a pen and paper.
1.1.1 Give the method and syntax for the following:
a. Converting a string to an integer.
b. Calculating the remainder of division.
c¢. Rounding a real number to an integer.

Paiinn Alavantara fenmn ama abrine fa anatbhae adein

‘Take note’ and ‘Did you know’ boxes
The boxes provide extra, interesting content
that might caution you to ‘take note’ of
something important; or give you additional
information. Note that the content in the
‘Did you know’ boxes will not be part of
your exams.

74

Take note

When creating mock data
for a database, it is useful
to use a site such as
Mockaroo Random data
generator.
https://mockaroo.com/

Did you know

Programming is a way of
thinking — not a rote skill.
Learning about ‘For’ loops
is not learning to program,
any more than learning
about pencils is learning

@

New words

Double —The Double data
type can store 15 - 16
digits in the fraction part of
a decimal number and thus
support greater precision.

Debugging — The process
of detecting and removing
existing and potential errors
(also called ‘bugs’) in
software code that can
cause it to behave
unexpectedly or crash.

QR Codes, Videos and Screen captures
These will link you to online content. When you
are in the eBook, you can easily access the links.

Consolidation activities

how to draw.

New words
These are difficult words that you may not have encountered before.
A brief explanation for these words are given.

4 TIPS TO SOLVE
PROGRAMMING
PROBLEMS

https://www.youtube.com/
watch?v=IsLeirHcoJQ

This is a revision activity based on what you have covered in the chapter. Take time to answer the questions on
your own. You teacher may also use these to assess your performance during class.

CONSOLIDATION ACTIVITY

QUESTION 1

Chapter 1: Programming fundamentals

Komani Game Reserve in the Eastern Cape offers accommodation and the chance to see three of the ‘Big Five’

animals. Do the following:

e Open the incomplete program in the 01 — Question1 folder.
e Compile and execute the program. The program has no functionality currently.
e Follow the instructions below to complete the code for QUESTION 1.1 to QUESTION 1.5.

1.1 A picture file called elephant.ona has been included in the root folder of the Question1 p Delphi proiect.

PROGRAMMING CHAPTER

FUNDAMENTALS |

CHAPTER UNITS

Unit 1.1 Problem solving

Unit 1.2 Procedures and functions in the Delphi run—time libraries

Unit 1.3 Procedures and functions

Unit 1.4 User interface design
Unit 1.5 Databases

Learning outcomes

At the end of this chapter you should be able to:

use algorithms, flowcharts and pseudocode to plan applications
debug applications using a variety of different techniques
create applications using the Delphi IDE

list and describe the most commonly used properties

create events for Delphi applications

use number variables and functions in applications

use string variables and functions in applications

use arrays and files in applications

use different looping structures in applications

use conditional structures in applications

create user-defined methods for applications

describe and implement the principles of user interface design
dynamically create Delphi components in applications

create and read text files in Delphi applications

create a connection to a database using Delphi components
use data from a database in applications.

INTRODUCTION

In this chapter, you will briefly look at all the concepts learned in Grade 10 and
Grade 11. To ensure this information is fresh in your mind, this chapter contains
five new programs for you to create. These include a statistical simulator, a fake
virus application, and a word clock. Work carefully to complete these programs
and the units in this chapter.

The remaining chapters of this book will rely on the fact that you are competent and
confident with your knowledge about the concepts that we revise in Chapter 1.

TERM 1 | CHAPTER T PROGRAMMING FUNDAMENTALS

UNIT

1.1 Problem solving

SOFTWARE ENGINEERING: A GUIDE FOR YOUR PAT

Problem solving refers to the process through which a solution is found to a

Did you know complex problem. Since programmers spend most of their time solving problems,
Programming is a way of they need to have a method to systematically tackle new problems.
thinking — not a rote skill.
Learning about ‘For” loops The problem-solving method consists of four steps. These are illustrated in the
Is not learning to program, diagram below and explained briefly:

any more than learning
about pencils is learning
how to draw. Understand the problem

Looking back ’ .A

‘ an iterative

process stop
when you
have enough

detail ’
'J Devise a plan

Implement the plan

Some basic strategies for getting to grips with a problem:

4 TIPS TO SOLVE [Source: Adapted from How to solve it, G. Polya, 1973, Princeton U.P]
A FRST UNDERSTANDTHEPROBLEM
PROBLEMS FIRST UNDERSTAND THE PROBLEM
You have to Do research to understand the details of the problem.
understand the Do you understand the scope of the problem?
problem. What are the input data?

What tasks must be performed?
What is the required output?

SECOND DEVISING A PLAN

Find the connection

e Have you written a related or similar program before?
NP /s youtiibe. Gomy between the data and | e Have you seen the same problem in a slightly different form?
WalChA\=ISEeitic G the unknown. e Could you restate the problem?
y p
You may need to e Could you introduce some alternate method?
consider alternate e Focus on IPO — it will help you isolate the tasks that must
problems if an be done.
immediate e Could you solve a part of the problem?
connection cannot e Could you derive something useful from the data?
be found. e Could you change the data so that the required output and

the data are closer to each other?
e Did you use all the data?
e (Create detailed notes of your progress.

You should eventually
come up with a plan
for the solution.

THIRD IMPLEMENT THE PLAN

Carry out your plan. | @ When carrying out your plan of the solution, check
each step.

Can you show that each line of code is correct?
Test each task as you complete it.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

FOURTH LOOKING BACK

Examine the solution | @ Can you check the result?
obtained. e (an you derive the result differently?
e (an you use the result, or the method, for some
other program?
e Solve the problem.

THE PROBLEM-SOLVING METHOD E/"
One of the best problem-solving strategies is: do something.

Take note
If, at any time, you get stuck on trying to figure out a solution to a problem, brain- First solve the problem,
storm your solution using a pencil and paper before trying to write the code for then write the code.
the program. Remember that the most important part of planning is creating a — John Johnson

detailed implementation plan that describes how you will solve the problem. To
create this plan, you need to make a list (or checklist) of every task that needs to
be completed.

In Grade 10 we looked at the user story. This tool is well-suited to help you as you
create your detailed implementation plan.

m Creating a detailed implementation plan

TEMPLATE: USER STORIES

aUser Specific type of user

member Member of the fitness club

admin The System Administrator
User Stories Confirmations
Asa... | want to be able to... (What) | So that | can.. (Why) Success... Failure...
member | Use the Login form Signup or view progress | Members navigator screen No such login
Login to the system with appears
user-name and password
member | see a list of training view data about training | Training program information | Incorrect selection,
programs program is displayed on program database not
screen upon selection of connected
program type
member | Select a training program Enter/select information | Only available programs Program full.
on signup screen active for selection. Those

Already running.

with trainer and not yet full. ,
Program not available

Popup message to confirm
that signup data is saved

Once we have used our user story to create an implementation plan to solve our problem, we have a good idea about which
tasks are needed to solve our problem.

Next we can start looking at screen layout for the tasks — this is driven by the user stories.

TERM 1 | CHAPTER 1 PROGRAMMING FUNDAMENTALS | UNIT 1.1 Problem solving

Example 1.1 Creating a detailed implementation plan continued

Here is an activity diagram, which provides an excellent way of capturing the broad picture.

ACTIVITY DIAGRAM ALTERNATIVE APPROACH

.Logln
logn

Register
Exit on fail

Jh-mm—mmumh]

Y
® rom

View Cusiomer detalie The cust details stored in Datab
osseranss ﬁ @ customer details stored in aaasab‘.

Goto next screen

. Form?2 — . Form3

Inveice detaile

Send invoice

if fal:

Send advice. order not full filed

Capture Order detais
Place order

Goto next screen >

Figure 1.1: Activity diagram — Overview of system (UML)

Once we have completed our activity diagram, we can now consider building a prototype in Delphi, building screens and linking
them. However, there will be no functionality yet.

v
Take note

In Unit 1.4 of this chapter,
we will discuss useful
design tips.

Also see Shneiderman’s
Eight Golden Rules of
Interface Design in
Annexure A.

WHAT’S UML AND WHY
DO YOU NEED IT?

https://www.youtube.com/
watch?v=8CBnAmYnwkO0

We call this evolutionary prototyping and it demonstrates the logical program flow
and navigation between screens. This helps you ensure that the layouts are
functional and satisfy the usability requirements.

WHAT ABOUT THE DATA?

Because we have an implementation plan as well as a basic Delphi prototype to
help us solve our problem in place, we can begin looking at the data we need to
complete the tasks we have identified. By using the ‘user stories’ you can get a
good idea of what data you will need.

In Grade 10 you also looked at a tool called the ‘noun-verb analysis’. This tool is
useful for extracting this information from the user stories. Look at the the second
column of Figure 1.1 above. Work through the following steps:

e Work through the ‘user stories’ template and collect all of the nouns
(YELLOW). In this way you can determine what objects or entities you need
to manipulate. The verbs (GREEN) will give you more details of how this
should be done.

e List all the details of the entities. You can unpack them using the information
you researched earlier.

e (Create a ‘data dictionary’ in which you can add the name of the data fields
you have identified and their types. An example is shown below:

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

Data Dictio nary]

Name Type Example Comment
item_ID gring mid _Possible Key]
item_qty integer 500 baxes
item_despript <ring 1kg mince pack
| dept_ID integer deptd Possible Key
Manager_name gring Davies]
‘Building no. integer 14

Now you are ready to set up a database if your problem requires it.
e Create the UML diagram to illustrate your database and classes.
An example is shown below:

Did you know

Nicholas Wirth used this
title on his famous Pascal
book: Algorithms + Data
Structure = Program

ENTITY RELATIONSHIP DIAGRAM CLASS DIAGRAM
. InvoiceTable @UserTabIa
PI InvoicelD PK UgerD @ PhoneClass I
FK CustiD UserName
o UserPassword o Attributes l
FK_MIHTIJ JobDescription -
e e AccessLevel 0 brand: String;
— 0 model: String;
ha hasa| hasa O owner: String;
O purchaseDate: TDateTime;
m..1 19 O price: Double;
1. lMethods
(@) customerrabie (@) DoctorTabie
. ntemTable © procedure create; {default constructor}
PH CustiD PH PrescriptioniD @ procedure create(Brand, model, owner purchaseDate listDate, price);
CustName PH RemiD PH PracticeNum © function getPrice: Double;
CustSurname RemDescription DoctorName © procedure setPrice(price: Double);
CustPhonehum RemCty DoctorSurname © function calculateAge: Integer;
CustAddress RemPrice DoctorPhoneNum © function toString: String;
CustTown kemE xpirDate Doctor Address
CustEmail Doctor Town
e —

Figure 1.2: UML diagram to illustrate your database and classes

e Think about how you will complete each of the tasks identified in the user
stories. Start by ordering the user stories by importance: ‘essential’,
‘important’ and ‘nice to have’. Consider how things will interact with
each other.

e Test each small sub-program as you go. To do this, you can use the
debugging techniques such as trace-tables, variable watches, error
catching and trace printing to find errors.

® Make good use of flowcharts or Pseudocode to plan the implementation of
algorithms you require. Remember the principles of IPO as you continue
with the designs of the algorithms. This will ensure that you end up with a
robust solution.

e \When you get stuck with the implementation of a particular sub-task, create
a small, standalone program to sort out the problem, and then move it back
into the main program. Because of the detailed implementation plan, you
can systematically complete all the small, individual tasks listed on your plan.

e Check to see if the plan solved the problem. To do this, test that each
sub-task meets its goal.

@

New words

Double — The Double data
type can store 15 - 16
digits in the fraction part of
a decimal number and thus
support greater precision.

Debugging — The process
of detecting and removing
existing and potential errors
(also called ‘bugs’) in
software code that can
cause it to behave
unexpectedly or crash.

TERM 1 | CHAPTER 1 PROGRAMMING FUNDAMENTALS | UNIT 1.1 Problem solving

7

Take note

Your program might:

e fail to solve the problem

e only partially solve
the problem

e create new problems.

If your evaluation reveals
any remaining problems,
you can repeat the
problem-solving process,
focusing on these

new problems.

Test the program for any calculation errors or logical problems. To do this,
you can use techniques like trace tables, variable watches, error catching.
Make use of these debugging tools and/or trace printing to find errors.
Output samples to ensure the program works as expected.

Look back to your initial problem statement and the ‘user stories’ and
compare your output to the requirements. This final check ensures that you
have not only met the requirements listed on your plan, but also the original
requirements from the user stories. Remember to include extreme values,
for example boundary values, minimum values, and so on, in your test data
to ensure the program works for any value.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

UNIT

1.2 Procedures and functions in the Delphi runtime libraries

In this unit you will learn about some of the procedures and functions in the Delphi run—time libraries.
These will help you as you create different programs to solve problems that you may need to solve as a
programmer.

DATE AND TIME

The DateTime variable is a container for a variable of type double. When you look at the variable it shows
a date and time (for example, 1 January 2019 06:00:00), but the actual value stored in the variable is a
number with a decimal (for example, 43418.25). When working with this value, the whole number
represents the full days since 30 December 1899, while the decimal value represents a fraction of a day
(that is, the time).

To create a DateTime variable, you can use one of the techniques shown in the table below:

FUNCTION DESCRIPTION EXAMPLE

tBirthDate := fyou kn(l)wtheexactnumber tBirthDate := 43646.261;
dNumber - of days since 30 December
' 1899, you can assign it directly

to the DateTime variable.

The StrToDateTime function can
tDate := tDate :=

StrToDateTime('dd/ (I:))(;r’!(\a/%r:n?edlitfhztr(ljg%elr:r)ir? the StrToDateTime('30/06/2019
mm/yyyy hh:mm:ss'); : g 06:15:27");

values are given in the following
order: day/month/year
hour:minute:second

The EncodeDateTime function
tDate := tDate :=

accepts integer values for the
EncodeDateTime(yyyy, earpmonthgda hour minute EncodeDateTime (2019, 06,
mo, d, h, mi, s); year, » Gy, ' 30, 06, 15, 27);

and seconds of the DateTime.

There are also four named functions you can use to access specific times. They are:
® Yesterday: Returns the DateTime of 00:00:00, the previous day.

e Date: Returns the DateTime of 00:00:00, today.

e Tomorrow: Returns the DateTime of 00:00:00, tomorrow.

e Now: Returns the current date and time.

To do calculations with a DateTime variable, you add (or subtract) the number or fractions of days to the
variable. If you want to set the DateTime’s value equal to now, seven days ago, you can subtract seven
days from the current DateTime as follows:

Seven days ago
tLastWeek := Now - 7;

TERM 1 | CHAPTER 1 PROGRAMMING FUNDAMENTALS | UNIT 1.2 Procedures and functions in the Delphi runtime libraries

."’ To add or subtract times, you need to add or subtract the appropriate decimal
value. The table below shows the decimal value per unit for hours, minutes and

Did you know

seconds.
It is usually easier to

remember the calculation S 07 UNITS PER DAY DECIMAL PER UNIT
. . MEASUREMENT

used to obtain the decimal

unit than the exact Hour 24 hours per day 1/24 =0.041667

decimal unit. Minute 24 60 = 1 440 minutes per day 1/24/60
=0.00069

Second 24 * 60 * 60 = 86 400 second per day. 1/24/60/60

=0.0000116

O] One of the biggest advantages of the DateTime variable is the functions related
FUNCTIONS 1 - DELPHI to it. The table below shows some of the most useful DateTime functions:

FUNCTION DESCRIPTION

) Returns an integer value between 1 and 31 for
1bay := the day of the month
DayOfTheMonth(tDate) ; y '
iDay := Returns an integer value between 1 and 7 for the
o day of the week.
https://www.youtube.com/ DayOfTheWeek (tDate) ; y
watch?v=biFMeKdzMjE
Returns an integer val ntaining th r.
iYear := eturns an integer value containing the yeal
YearOf (tDate)
. Returns an integer value between 1 and 12
iflonth == containing the month
MonthOf (tDate) d
iDays := Returns an integer value of the number of days
DaysBetween(tDatel, between two dates
tDate2);
) Returns the number of days in a given date’s
(D =
O I;aaZ;nAMonth(tDate)- month (between 28 and 31).
PROCEDURES - DELPHI y ’
. Returns the days in a given date’s year (either
1Days = 365 or 366)
DaysInAYear (tDate) ; '
ool ot
IsLeapYear (iYear); yea '
c) A built-in array containing the month names (i.e.
h&ﬁéﬁﬂ%@?ﬁﬁ&fgg / Formatsettings. LongMonthNaX;nes[ﬂ = ‘3anuary’). (
LongMonthNames [index]

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

FUNCTION DESCRIPTION

A built-in array containing the day names (i.e.
LongDayNames[1] = ‘Monday’).

FormatSettings.
LongDayNames[index]

Returns a formatted string of the DateTime,
based on the “sFormat” input. You can create a
formatting string by combining the following
letters that represent units of time:

e Y=year

M = month

D = day

H = hour

N = minute

S = second

Z = millisecond

For example, the format string ‘DD-MM-YYYY’
will return a value like ‘25-12-2030'.

sOutput ;=
FormatDateTime(sFormat,
tDate);

To use these methods, you need to add the DateUtils library to your project. This
is done by including the text DATEUTILS in the USES section of your application
Once added, you can use any of the functions inside the DateUltils library.

Open the project in the Word Clock folder. We will now create the code for the Word
Clock. To do this, you need to:

1. Use a variable to store the current time.

2. Use functions to isolate the seconds, minutes and hours from the time.

3. Use a function to ensure that the hours only includes the numbers 1 to 12.
4. Determine whether the time of day is in the morning, afternoon or evening.
5. Write this information to the correct labels every second.

Once you are done, save your application in the folder 01 — Word Clock.
Solution

For this application, you only needed to use the timer’s OnTimer event. The code below
gives one possible method for solving this problem, although there are many other
solutions that would also work.

TERM 1 | CHAPTER 1 PROGRAMMING FUNDAMENTALS | UNIT 1.2 Procedures and functions in the Delphi runtime libraries

m Word Clock continued

OnTimer event
procedure TfrmWordClock.tmrTimerTimer (Sender: TObject);
var

tTime : TDateTime;

sTimeOfDay : String;

iHours : Integer;

begin
1blSeconds.Caption := FormatDateTime('s', Now) + ' seconds and';
1blMinutes.Caption := FormatDateTime('n', Now) + ' minutes past';
tTime := Now - Date;

if tTime < 0.5 then

sTimeOfDay := ' in the morning';

if (tTime >= 0.5) and (tTime < 0.75) then
sTimeOfDay := ' in the afternoon';

if tTime >= 0.75 then
sTimeOfDay := ' in the evening';

iHours := StrToInt(FormatDateTime('h', tTime)) mod 12;
if iHours = 0 then
iHours := 12;

1blHours.Caption := IntToStr(iHours) + sTimeOfDay;
end;

Once you are done, run and save your application.

In this code, the first two lines make use of the FormatDateTime function to display the seconds or
minutes of the current time (NOW). Since the timer updates every second, the time calculated as NOW
will increase every second, resulting in the labels showing the newest time every second.

The tricky part of this code is to update the third line, which shows whether the hours are in the morning

or evening, as well as showing the hours between 1 and 12 (and not 0 to 24). To do this:

e Start by subtracting the current date (date function) from the current date and time (now function).

e This will return only the time which will be a fraction between 0 and 1 (with O representing 00:00 AM,
0.5 representing 12:00 PM and 1 representing 00:00 AM the next day).

e With this decimal value, you can use IF-THEN statements to determine whether it is currently the
morning, afternoon or evening.

e Make sure the hours are always between 1 and 12. To do this, you start by isolating the hours from
the time. While this can be done in a number of ways, the code above uses the FormatDateTime
function to display a string that only contains the hours. This string is then converted into an integer.

INFORMATION TECHNOLOGY | GRADE 12 |

e By using the mod 12 mathematical operator, you calculate the remainder
of the hours divided by 12. This will always return the correct hour value
under 12. However, when it is 12 o’clock in the morning or night, the
remainder will be O, which is incorrect. To fix this, an IF-THEN statement is
used to change the value from 0 to 12.

e The hours are converted back to a string and assigned, together with the
time of the day, to the label’'s caption.

ARRAYS AND FILES O
CREATING AN ARRAY
ARRAYS
Arrays are variables that can be used to store multiple related variables of the
same type (called elements). As long as there is space left in the array, you can
continue writing new information to it. Each array has an array index, which is an
integer that indicates the number of the element you want to access in the array.
An array can be created using the following syntax:

https://www.youtube.com/
watch?v=kW7s90JvZLM

aName : Array[FirstIndex..LastIndex] of Type;

FOR-loops are often used to access each of the items in your array. For example,
if the value of each banking transaction is stored in an array variable, you can find
the total of all transactions as follows:

For-loops and arrays

for i := 0 to Length(aTransaction) do
begin

dTotal := rTotal + aTransaction[i];
end;

TERM 1 | CHAPTER 1 PROGRAMMING FUNDAMENTALS | UNIT 1.2 Procedures and functions in the Delphi runtime libraries

FILES

To store data used or created by your program permanently, you need to store data in a file on your
computer. When working with files in an application, you need to follow five steps. These are:

e declare the TextFile variable

® assign a text file name to the variable

e indicate how the file will be used (rewrite, reset or append)

e use the file in the application

e close the file

The code snippet below, which writes the phrase “Hello, World!” to a file, shows each of these steps.

File syntax
var
fOutputFile : TextFile; // Declare the variable

begin
AssignFile(fOutputFile, 'output.txt'); // Assign the variable
Rewrite(fOutputFile); // Indicate how the file will be used
WriteLn(fOutputFile, 'Hello, World!'); // Use the file
CloseFile(fOutputFile); // Close the file

end;

The following functions can be used to write to or read from a TextFile.

FUNCTION DESCRIPTION

ReadLn(fName, Returns the first line of your text file as a string saved in sOutput variable, before moving
sOutput); the cursor to the next line.

bDone := Eof(fName); Returns a Boolean value that indicates whether the end of file (EOF) has been reached.

WriteLn(fName, sinput); | Writes a string to the TextFile before moving to the next line.

Write(fName, sinput); Writes a string to a TextFile without moving to the next line.

Eof(fName) Returns a Boolean value indicating whether the end of file has been reached.

To read all the data from a TextFile, the two functions from the table are usually combined with a
WHILE-DO-loop, as shown in the code snippet below.

While loop to read files
while not Eof (fName) do
ReadLn (fName, sOutput);

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

T

Activity 1.1

Answer the following questions using a pen and paper.
1.1.1 Give the method and syntax for the following:
a. Converting a string to an integer.
Calculating the remainder of division.
Rounding a real number to an integer.
Copying characters from one string to another string.
Finding the year of a date and time.

- o 2 0 T

Determining if a year is a leap year.
Declaring an array with 5 integer elements.

«

h. Opening a file to add text to it.
1.1.2 What is the difference between the APPEND, REWRITE and RESET procedures?

‘ Activity 1.2

Update your Word Clock activity so that it looks as follows. The date at the bottom of
the clock should update automatically and be shown in a single label.

@ Word Clock = O X

ITIS

17 seconds and

58 minutes past

12 In the afternoon
on THURSDAY, day 8 of JANUARY

Figure 1.3: The World Clock

TERM 1 | CHAPTER T PROGRAMMING FUNDAMENTALS | UNIT 1.2 Procedures and functions in the Delphi runtime libraries

UNIT

1.3 Procedures and functions

CODE YOUR OWN

Procedures and functions are groups of statements that are created that complete
a specific task. These procedures and functions can be created for a number of
different reasons. They:

® preak the code into smaller, more manageable pieces.

e make the code easier to understand.

® make it easier to find problems.

® make it easier to add new functions or update the code.

e allow you to re-use certain algorithms from different events.

For these reasons, professional programmers try to make use of procedures and
functions whenever their code becomes too long or difficult to manage. A general
guideline is that you should try to not have the same code repeated, keep
procedures (including events) to less than 15 lines of code, and they should
almost never be more than 30 lines of code. Just as importantly, each procedure
should do only one thing and it should do this thing well.

Both procedures and functions can accept variable inputs (called parameters),
but only functions can return a value. The following syntax is used to create a
procedure:

Procedure with value parameters
procedure ProcedureName(parameterNamel : typel;
parameterName2 : type2);

var
varl : Type;
begin
Statementl;
Statement2;
Statement1000;
end;

Once a parameter value is sent to a procedure, it works exactly the same as any
other variable. The only difference between parameters and variables is that the
parameters are defined next to the procedure name and that the parameters
start with a value. To call a procedure, the following syntax is used.

Calling a procedure
ProcedureName (Valuel, Value2 ... Valuel000);

Where the values must be the same number, in the same order and of the same
type as the parameters in the declaration the procedure.

There are only three differences between the function syntax and the procedure

syntax:

e All functions start with the key word function.

e After the parameters are listed, functions must specify the variable type of
the return value.

INFORMATION TECHNOLOGY | GRADE 12 |

¢ Inside the function, a value must be assigned to the variable Result. This value will be returned once
the last line of the function has been executed.

Function syntax
function FunctionName(parameterl : Type; parameter2 : Type): ReturnType;
var
varl : Type;
begin
Statementl;
Statement2;

Result := Value of ReturnType;
end;

A function can be called in the same way as a procedure except that its return value must be assigned to
a variable. To call a function:

Calling a function
ReceivedValue := FunctionName(Valuel, Value2 ... Valuel000);

Custom functions and procedures must be declared after the implementation section of a project but
before the first automatically created procedure. This allows all the automatic procedures following the
custom functions to make use of the custom functions.

Custom functions and procedures also have access to the form’s global variables and components.
However, in order to access the components, the procedure and functions must first use the form’s name,
followed by a full stop, followed by the component’s name. This is shown in the code below.

Accessing a component from user defined methods
sValuel := frmName.lblData.Caption;
sValue2 := frmName.edtData.Text;

Example 1.4 Use reading from and writing to a file to copy the contents

Open the project in the folder 01 — Copy File and insert the following code:

Declare the procedure copyMyFile in the private section:

procedure copyMyFile(fromFile : String; toFile :String);

Press <Control + shift + C> to create the stub for the procedure.

TERM 1 | CHAPTER T PROGRAMMING FUNDAMENTALS | UNIT 1.3 Procedures and functions

Example 1.4 Use reading from and writing to a file to copy the contents continued

Add the following code:

procedure TForml.copyMyFile(fromFile, toFile: String);
var
infile : TextFile;
outFile: TextFile;
line : String;
begin
if Not FileExists(fromFile) then
showMessage (fromfile + ¢ NOT FOUND’)
else
begin
AssignFile(inFile, fromFile);
Reset (infile) ;
AssignFile(outFile, toFile);
Rewrite (outFile);
while not eof(inFile) do
begin
readln(infile, line);
writeln(outFile, 1line);
end;
closeFile(infile);
closeFile(outFile);
showMessage(‘File copied’);
end;

Add the code below to the [Copy File] button Onclick event:

procedure TForml.btnCopyFileClick(Sender: TObject);
var

fromFile: String;

toFile: String;

begin
fromFile := InputBox('File Copy', 'Copy from - filename:',"'"');
toFile := InputBox('File Copy', 'Copy to - filename:',"'");
copyMyFile(fromFile, toFile);

End;

Run the program and enter the filename Acronyms.txt . This file will be copied to a file with the name
of your choice, that is, the name you enter in the second input box.

& Activity1.3

Using pen and paper, create the following user-defined functions.
1.3.1 A custom function that accepts a number and an exponent and calculates the solution.

1.3.2 Afunction that returns only the largest value from an array.
1.3.3 Afunction that returns the n largest value from an array, where n is provided by the user.

INFORMATION TECHNOLOGY | GRADE 12 |

UNIT

1.4 User interface design

The difference between an application that is used by millions of people and an
application that is left untouched is often the user interface. This is because
applications with easy, fun, beautiful, simple and intuitive interfaces are enjoyable
to use, while poorly designed user interfaces can be incredibly confusing and
frustrating to use.

This unit looks at the principles of user interface design, how a multi-form user
interface can be created and how dynamic user interfaces can be created.

PRINCIPLES OF USER INTERFACE DESIGN

The following principles should be used when creating user interfaces:

e Put users in control

e Minimise the effort

e Eliminate useless items

e Give visual cues

® Give feedback

e Be consistent

e Accommodate all users. The first step to building a good user interface is
to give users control. This means that users should be able use the
application and complete tasks in ways that feel intuitive to them.

® The next core concept is to minimise the effort it takes to use the
program. This means you should not ask users to enter the same
information more than once, not use unfamiliar jargon or strange terms,
make the transition to the next step obvious, help users to provide the
correct information, and protect users work so that they never accidentally
lose work.

Join Medium.
Create an account to receive great stories in

your inbox, personalize your homepage, and
follow authors and topics that you love.

(Sign up with Google

[E3 Sign up with Facebook

Already have an account? Sign

To make Medium work, we log user data and share it with
service providers. Click "Sign up” above to accept Medium's

Terms of Service & Privacy Policy.

Figure 1.4: Medium (https.//medium.com/) minimises user effort allowing users sign-in
with a Google or Facebook account

WHAT IS USER
INTERFACE DESIGN?

https://www.youtube.com/
watch?v=WtoK7BzalsA

7z

Take note

Also see Shneiderman’s
Eight Golden Rules of
Interface Design in
Annexure A.

TERM 1 | CHAPTER T PROGRAMMING FUNDAMENTALS | UNIT 1.4 User interface design

e Next, visual elements that are not helping users should be eliminated
or hidden until needed. In this way, users are not overwhelmed by all the
options and it is clear to users what they are expected to do. Similarly, you
should also eliminate steps or tasks that are irrelevant to the solution of
the problem.

e One way in which applications can be made simpler is by using visual
cues. These cues help users to understand where they are in your
application, what they are doing, how the application works and what you
expect them to do next. Popular visual cues include colours, photos,
arrows, icons, animations or a single larger component.

FIBRE FIXEDLTE ADSL

W
webafrica

ARel IN " - N\
(AL BTHIET. A%

—

GET DOWN WITH THE | 1
| FASTEST ADSL IN TOWN. | =

| live here... CAN | GET ADSL?

IS OLD SCHOOL ADSL YOUR JAM?

Figure 1.5: WebAfrica uses bright colours to draw the attention to interactive elements

e The fifth key concept is to give users feedback. This means that users
should receive an acknowledgement when they interact with your
application. This can include a progress bar, a message, a loading
animation, a button changing colours or sound. By providing user with
immediate feedback, they never have to worry that their action was
not recorded.

e Consistency in user interface design is another key concept. Users who
have used some parts of your application should be able to predict how
other parts of your application will work. Similarly, items should generally
remain in the same place, be the same size and have the same colour
across your screens.

Save changes Cancel Cancel Save changes

Figure 1.6: Buttons with inconsistent positions can create frustrated users

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

e The final concept is to accommodate different users. Users can differ
according to:
© What they want from your application.
o Their skills and experience.
o Their ability to use your application.
o The tools they are most comfortable with.
o Their expectations.

If you want all these users to enjoy using your application, you need to carefully
consider each element of your application.

MULTI-FORM USER INTERFACES

To create a multi-form (or multi-screen) user interface, you need to follow three
steps:

e Create the second form

e (Open the second form

e Pass data between the forms

The example below shows how to create a second form.

m Creating a form

Load the project FriendBookLogin

You will see this form has been created for you.

4 N\

@ sign Up i (=@]=]
» Friend Book Login Form ¢

To a create a new form:
1. Open the File menu in RAD Studio.

2. Select the New option, the click on the Form — Delphi option.

TERM 1 | CHAPTER T PROGRAMMING FUNDAMENTALS | UNIT 1.4 User interface design

m Creating a form continued

(i3 FriendBookLogin - Delphi 2010 - Unit1

File Edit Search View Refactor Project Run Component GExp
d i ; > |@ Package - Delphi

33 Open... {5 Unit - Delphi

“1¢&=’ Open Project... Ctrl+F11 [B VCL Forms Application - Delphi

_ Reopen 3 - Forn 2 Delg
F) - Form

& Favorites > 'tl Other..

E Save Ctrl+S
Save As...

Save Project As...

Save All Shift+Ctrl+S
'a;;- Close

Bl. CloseAll Ctri+Alt+X

¥

Customize...

Q"o

3 UseUnit.. Alt+F11
5@ Print...

> Eit

e T e

3. You should see a new form open in your project, and Unit2.pas appear in the

Project Manager panel.

4. Save this unit in the same folder as your project and give the name SignUp-u.

E FriendBookLogin.dproj - Pr... [R[53 [

B -86 @ -
Bl 8-
File
ﬁ% ProjectGroupl
= [F) FriendBookLogin.exe
u% Build Configurations
-- FriendBookLogin_u.pas
- SignUp_u.pas

5. You can now edit the second form by clicking on its Design tab.

6. Copy the design as illustrated:

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

Example 1.6 Linking forms

To link forms in a Delphi application:
1. Find the USES statement at the top of your first form’s FriendBookLogin_u code .
2. Add the name of the unit SignUp_u to the uses section. This allows your first form to access your second form.

uses
Windows, Messages, SysUtils, Variants, Classes, Graphics,
Controls, Forms,Dialogs, StdCtrls, SignUp_u;

3. In the OnClick event of the [Go To SignUp] button add the second form’s Show method frmSignUp.Show.

4. To close the second form, either click on the [Close] button in the top-right corner or run the form’s Close
method frmSignUp.Close.

5. Experiment by changing the frmSignUp.Show to frmSignUp.Showmodal. Explain in your own words how these
two instructions differ.

Once you have created your second form, you need to link the two forms so that you can swap between
them.

The final step is to pass information between the forms. There are two different ways to do this:

e By including a unit in the USES section, you gain access to its visible variables through the form e.g.
frmSignUp.iNumber. You also gain access to the properties of its components directly e.g.
frmSignUp.IbIName.Text.

e By saving the data in an external file (such as a textfile), any unit can read the data from the file.

In most situations, you will use the first option to share data between forms. However, saving the data to
a file can be useful if the data needs to be stored permanently.

By using these techniques to create new forms, link the forms and share data between the forms, you can
add any number of forms to an application. This helps you to create a more organised application where
each form serves a specific purpose.

DYNAMIC USER INTERFACES

Dynamic user interfaces are interfaces in which some or all of the user interface components are created
using code or while the application is running. By creating user interface components using code, you can
dynamically update your user interface based on user decisions, amount of data available or on certain
conditions being met.

The following section will look at the different ways to create visual and interactive components.

VISUAL COMPONENTS

To create a non-interactive component using code, you need to follow three steps:
e Declare an empty variable of the component’s class.

e Create the component and assign it to the empty variable.

e Use the component variable to assign values to the required properties.

TERM 1 | CHAPTER T PROGRAMMING FUNDAMENTALS | UNIT 1.4 User interface design

BUILDING EFFECTIVE
USER INTERFACES

https://www.youtube.com/
watch?v=7LWiM70Jick

For example, when creating a TLabel component, you should start by declaring
a global label variable.

Declaring global components

var
frmMain: TfrmMain;
1b1DynamicLabel : TLabel;

Next, you should use the TLabel class’s Create method to create and assign a
label to this variable.

Creating the component

procedure TfrmDynamicItems.btnCreatelLabelClick(Sender:

TObject);

begin
1b1DynamiclLabel

end;

:= TLabel.Create(Self);

Finally, you need to set the properties of the label to ensure it is visible to the user.

Standard label properties
1blDynamicLabel.Parent := Self;
1blDynamicLabel.Text := 'Hello, World!"';
1blDynamicLabel.Top := 100;

1blDynamiclLabel.Left := 100;
1b1lDynamiclLabel.Width := 100;
1blDynamiclLabel.Height := 20;

The table below lists a few of the most important properties.

PROPERTY COMPONENTS ~ PARAMETERS DESCRIPTION
Parent All Form All components must be assigned to a parent form. The component will
be closed once the parent is closed.
Left All Integer The number of pixels the component is moved from the left of the form.
Top All Integer The number of pixels the component is moved from the top of the form.
Width All Integer The width of the component in pixels.
Height All Integer The height of the component in pixels.
Caption Label, Button String The text shown by labels and buttons.
Text Edit String The text shown by text boxes.
Bitmap. Image String A string of the file path of the image that will be displayed.
CreateFromFile
[tems.Add ListBox, String The string that will be shown on one row of a list box, combo box or
ComboBox, radio group.
RadioGroup
Lines.Add RichEdit, Memo | String The string that will be shown on one row of a rich edit of memo

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

INTERACTIVE COMPONENTS

Creating an interactive component during run-time with an event (such as an

OnClick, OnChange or OnTimer event), can be done in seven steps:

e Declare the component variable.

e Create the component and assign it to the variable.

e Set the component properties.

e Declare the name of a custom procedure in the public section of your form.

e Add the (Sender: TObject) parameter to the procedure’s name to identify the
type of component.

e Create the custom procedure for your event in the code.

® Assign the name of the procedure to the appropriate event property (for
example, the OnClick property).

The first three steps of this procedure are identical to those of visual components.

For the fourth step, you need to add the name of the custom event handler, that
will be linked to your interactive component’s event, to the public section of your
code. The public section can be found inside the type section, and above the
global variables and implementation sections. The image below shows a custom
procedure called ButtonClick added to the public section. .

type
TfrmMain = elass (TForm)
private
{ Private declarations }
public

procedure ButtonClick (Sender: TObject):;
{ Public declarations }
end;

Figure 1.7: A custom procedure in the public section

As shown in the image above, all custom event handlers must have TObject
parameter called Sender.

The next step is to create the custom event handler, which is technically a method
linked to your form. This can be done in the same way as the custom procedures
created in the previous unit. However, since this procedure is a form method that
forms part the form, it needs to include the full name of the form before the
procedure name. The code below shows an example of the ButtonClick form
procedure.

Dynamic OnClick method
procedure TfrmMain.ButtonClick(Sender: TObject);
begin
ShowMessage ('Hello, Button!');
end;

TERM 1 | CHAPTER T PROGRAMMING FUNDAMENTALS | UNIT 1.4 User interface design

Finally, the method name (excluding the “TfrmMain” part) can be assigned to the appropriate event
property when the button is created.

btnDynamic := TButton.Create(Self);
btnDynamic.Parent := Self;
btnDynamic.Text := 'Click me!';
btnDynamic.Left := 10;
btnDynamic.Top := 10;
btnDynamic.0OnClick := ButtonClick;

Example 1.7 Photo Bomb

At the start of the 21st century when most computers were still using Windows XP, the most common type of virus
was a virus that caused infected computers to automatically open hundreds of new windows containing
advertisements. These windows would flood the user’s screen and open more quickly than they could be closed.
Since most of these advertisements were for adult-only websites, these viruses were especially embarrassing for
their victims!

For this application, you will simulate these old viruses. To start the virus, the user will enter the name of an image
and click on a button with the text [Activate Virus]. This button will increase the size of the form and create a new
copy of the image every few milliseconds. The position of each image should be randomly selected inside the form.

You can use your own image or the teacher will provide the stop.bmp image to you. Take note, this image must be
placed in your application’s win32\debug folder.

The project should be saved in the folder called 01 — Photo Bomb.
Solution

For this application, you can create a very simple user interface. Even though it is not visible, this interface includes
a disabled timer.

@r. - 0O X

Image name:

ACTIVATE VIRUS

Once the [Activate Virus] button is clicked, the following OnClick event is run.

Activate Virus OnClick event
procedure TfrmPhotoBomb.btnActivateVirusClick(Sender: TObject);
begin
frmPhotoBomb.Height := 640;
frmPhotoBomb.Width := 800;
tmrTimer.Enabled := True;
end;

This event simply resizes the form and enables the timer. Once the timer has been enabled, the following OnTimer
event activates every few milliseconds (based on the timer’s interval).

INFORMATION TECHNOLOGY | GRADE 12 |

Example 1.7 Photo Bomb continued

OnTimer event
procedure TfrmPhotoBomb.tmrTimerTimer (Sender: TObject);
var
iRandomTop, iRandomLeft : Integer;
imgPhoto : TImage;
begin
randomize;

iRandomTop := Random(frmPhotoBomb.Height) - 150;
iRandomLeft := Random(frmPhotoBomb.Width) - 150;

imgPhoto := TImage.Create(Self);

imgPhoto.Parent := Self;

imgPhoto.Top := iRandomTop;

imgPhoto.Left := jRandomLeft;

imgPhoto.Width := 300;

imgPhoto.Height := 300;

imgPhoto.Picture.LoadFromFile(edtImageName.Text);
end;

Looking at this code, you start by randomly selecting a coordinate for the top and left properties of the image.
These positions are based on the height and width of the form minus half the height and width of the image.
This will ensure that at least half the height and width of the image is always visible, regardless of the randomly
selected position.

The next step is to dynamically create the image. This includes setting all the standard properties for the image,
including the image’s parent, top, left, width, height properties, and using the Picture.LoadFromFile() method.

TERM 1 | CHAPTER T PROGRAMMING FUNDAMENTALS | UNIT 1.4 User interface design

T

Activity 1.4

Answer the following questions in your own words.
1.4.1 List and describe four principles of user interface design.
1.4.2 What are the three steps needed to create a multi-form application?

1.4.3 List five common properties that should be set when dynamically creating
a label.

1.4.4 What is the syntax for an OnClick event declaration used with a dynamically
created button?

‘ Activity 1.5

Create the following multi-form application:

1.5.1 The project has two forms.
1.5.2 Each form contains a textbox with a default value and a button.
1.5.3 When the button on the first form is pressed:

a. swap the values between the two textboxes.

b. hide the active first form and display the inactive second form.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

UNIT

1.5 Databases

When programmers want to save data, their first choice is to use a database.
This section will look at five parts of using a database with your application:

e (Creating a database

e Connecting a Delphi project to a database

e Reading data from a database

e \Writing data to a database

e Using the data from a database

® Modifying/manipulating the data from a database

CREATING A DATABASE

The example below shows you how to create a simple, single-table database.

Example 1.8 Creating a database

To create an Access database: E/;

Enter the name of your database in the File name text box.

1. Open Microsoft Access from the Start Menu.
Take note

2. Double click on the Blank database option in the main window. .

) i i When creating mock data
3. Inthe window that opens, click on the Openicon for a database. it is useful
4. Select an appropriate folder to save your database and click OK. 10 use a site such as
5. Select Microsoft Access Database (2002-2003) as the file type. Mockaroo Random data
6 generator.
7.

https://mockaroo.com/

Click OK to close the window, then click on the Create button to create
the database.

8. Find the Table1 table in the All Access Objects panel on the left side of Access.

All Access Obje... @ «

Search. 40
Tl 2 o
EH Tablel DATABASES IN DELPHI

9. Right click on this table and select the Rename option.

10. Enter the name of your table and press Enter.

11. Inside the table, click on the Click to Add option at the top of the table.
12. Select the field type then enter a name for the field.

13. Continue adding fields to your table until all fields have been added. https://www.youtube.com/
watch?v=dwhOwv6lJgA

14. Enter values into these fields to create new records.

TERM 1 | CHAPTER 1 PROGRAMMING FUNDAMENTALS | UNIT 1.5 Dafabases

Example 1.8 Creating a database continued

BeReploce (Detail)
* Golo-

v h 4 x hswar BT U A-7-05- E== 4|3
Viewt Chpboard d Son & fidter fing Tt F ormattang (] -
Tables ® « |10
o =1 [} « froat . back created - next + seen - comect - Cickrtoddd -
o | 1 Bonjour Good day 14/11/201811:40:19 15/11/2018 12:45:03 o]
= | 2 salut Hello 14/13/2018 12:80:19 15/11/2008 12:45:08 0 0
| 3 Marci Thank you 14/11/2018 1140119 15/11/2018 12:45°04 0 0
| 4 $ilvous plait Please 14/11/201811:40:19 15/11/2018 12:45:05 0 0
| 5 Bonsoir Good evening 14/11/201811:40:19 15/11/2018 12:45:07 0 0
| 6 Beaucoup alot 14/11/2008 1180019 15/11/2018 12:45:08 0 0
7 Cava? Howareyou? 14/11/200811:40:19 15/11/2018 12:44:54 0 0
| 8 Maison House 14/11/2018 11:80:19 15/11/2018 12:45:00 L L]
| 3 Chien Dog 14/11/2018 11080119 15/11/2018 12:45:01 0 0
| 10 Rouge Red 14/11/201812:08:10 15/11/2018 12:45:02 0 (]
11 Ballon Ball 14/11/2018 12:49:18 15/11/2018 12:50:52 0 0
| 12 Parler To spaak 14/11/2018 1224923 15/11/2018 12:50:55 0 o
| 13 Miliew Middle 14/11/201812:56:29 14/11/2018 13:08:32 0 L
| 14 Magnifique Magnificent 14/11/2018 12:57:39 14/11/2018 13:08:34 0 L]
15 Esu water 14/11/2018 13:05:11 14/11/2018 13:08:30 0 0
- (new)| (] 0
| Recora ¢ ¢ 160016+ W 1 Search

Darsthest View

Numleck D B

15. Save the database in the same folder as your application and close Microsoft Access.

CONNECTING TO A DATABASE

To connect to a database in Delphi, you will need to use three invisible components:

e TADOConnection: Creates a connection to an external database.

e TADOTable: Uses the database connection to connect to a specific table inside your database.
e TDataSource: Create a connection between your TADOTable and Delphi visual components.

The first two of the components can be found from
the dbGo list in RAD Studio’s Tool Palette, while the
DataSource component can be found from the
Data Access list.

These components should not be added directly to
a unit, but rather to a data module. A data module
is a special form or container to keep all the
database components organised and together. By
separating the database connections from any
form, you can import the database into each form
through the “uses” section.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

Tool Palette %

&)~ Qgserh |

Ly Jer

[# Indy I/0 Handlers

[# Indy Intercepts

[#] Indy Misc

[#] Indy SASL

[+ WebServices

(8560]
% TADOConnection

TADOCommand

TADODataSet

TADOTable

TADOQuery

3 TADOStoredProc

% TRDSConnection

il 3 =

=
g
]

3

=

o B

Figure 1.8: The dbGo list from the Tool Palette

Example 1.9 Adding a data module

To add a data module to your project:

1. Inthe Project Manager panel in the top right corner of the screen, right click on the
.exe project file.

2. Select the Add New option and click on Other.
3. Inside the New ltems window, select the Data Module option and click OK.

@ New ltems x
~ 77 Delphi Projects |p Ssarch |
B e A : S i
] Inheritable ltems & % % -
—{ Web Documents
Comp t Data Module FireMonkey FireMonkey

Frame Metropolis ...

= 8 m 8

MSBuild Multi-Device Thread Unit
Targets File Form Object
| OK I Cancel Help

4. This will add a new data module to your project.

=3 32-bit Windows v || -

éj u_flashyCards m

5. Save the data module in your project folder and rename the data module form (for
example, dbmName).

6. Select your main form and open the Code screen.

7. Add the data module’s name (e.g. dbmName) to the USES section of your main
form’s code.

Once you have created the data module, you can add the database connection

components to it.

TERM 1 | CHAPTER 1 PROGRAMMING FUNDAMENTALS | UNIT 1.5 Dafabases

SEJERNOMN Adding database connection components

To add the database connection components:

1. Add a TADOConnection component to the data module and change the name, for
example, conCards.

2. Change the connection’s LoginPrompt property to False to avoid receiving a login
prompt every time you run the application.

3. Double click on the connection component in your data module. This will open the
Connection String window.

dmoCards.conCards ConnectionString x
Source of Connection
(O Use Data Link Flle
Browse. .,
(®) Use Connection String
l | [_sud.. |
oK Cancel Help

4. Click on the [Build] button.

5. Inthe Data Link Properties window, select the Microsoft Jet 4.0 OLE DB Provider
(.mdb database) or Microsoft Database Engine (.accdb database) option and click
Next.

6. Inthe Connection tab, enter your database name and extension in the textbox.

1. Select or enter a database name:

7. Select your database and click Open for the .mdb database option.

8. Inthe Connection tab click on the Test Connection button. You should receive a
message stating that the test connection succeeded.

Microsoft Data Link >

o Test connection succeeded.

9. Click OK then click OK again.

INFORMATION TECHNOLOGY | GRADE 12 |

e ENROAN Adding database connection components continued

Now that the database has been connected to your Delphi project, you can add a connection to a specific table.

To do this:

1. Add a TADOTable component to your data module.

2. Click on the dropdown list next to the Connection property of your table and select the name of your database

connection component.

[T T P

G M Ve Gruaw Gmms G Gt s Smies Men Dessiess C 4.]

DE-EERnG DSEIA F-G0-N0G0 [Woese -]
S e gt rm

L1 R

Wemten
ot A NI 4 el
-1 Tt e

Bt

B 'R a2 mm B

e NE

[TSRO r R S Pa—
L T P
g “

. Change the value of the TableName property to the name of the table you are connecting to.

. Change the table’s Active property to True.

. Change its DataSet property to the name of your TADOTable component.

3
4
5. Add a TDataSource component to your application.
6
7

. Save your application.

You now have a connection directly to a table on your database.

READING DATA FROM
A DATABASE

Once a database connection has been made,
you can start using and displaying the data in
your application. The easiest way to do this is
to display the database table as a table (or
TDBGrid component) in Delphi. The TDBGrid
component can be added from the Data
Controls list in the Tool Palette.

Tool Palette [&3

&)+ O[Osweh |

=l Data Controls

| TDBGrid |

fila TDBNavigator
sg TDBText
== TDBEdit

S DWEAs

TDBMemo
TDBImage
TDBListBox
TDBComboBox
TDBCheckBox
TDBRadioGroup
TDBLookupListBox

Figure 1.9: The TDBGrid component in the Grids list

TERM 1

CHAPTER T PROGRAMMING FUNDAMENTALS | UNIT 1.5 Dafabases

m Using the grid component

To link a database table to a grid component:
1. Add a TDBGrid to your form.

2. Select the Grid component and change its DataSource property to the name of your
TDataSource component.

3. Save and test our application. If all the connections were made correctly, you should
now see the data from your database table appear on your grid component.

WRITING DATA TO A DATABASE
To add a record to a database, you will use two of the TADOTable component’s
methods.

Method Description Example

Append | Creates an empty record and selects it, allowing you to | tblCards.Append;

add values to the record.

Insert Inserts an empty record after the currently selected tbICards.Insert;

record and selects the new, empty record.

Post Saves all the changes you have made to records. thiCards.Post;

Without running this command, all changes will be
discarded.

By using the append or insert method, an empty row is added to the end of your
database. You can then set the values in this row, much like you would change
the values of a variable.

Adding values to database fields
tblCards.Append;

tblCards[‘fieldNamel’] := 'Hello';
tblCards[‘fieldName2’] '"World';
tblCards.Post;

Take note, the field names are placed inside single-quotation marks, inside
square brackets, after the table name. This syntax will always be used to access
specific fields in a table.

USING THE DATA FROM A DATABASE

To use the data from a database (without first showing it in a grid), you use an
algorithm that is similar to the algorithms used to read text files:

Selecting the first record of the database.

Create a while loop that runs until you reach the end of the file.

Inside the loop, read the relevant fields for your application.

Using these values, manipulate the data as needed by your application.
Finally, move to the next record and repeat the process.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

The table below shows the table methods that allow you to iterate through the
data.

Method Description Example
First; Selects the first record in your table, allowing you to read the tbIName.First;
value of its fields.
Next; Selects the next record in your table. This must be included in tbIName.Next;

your while loop.

Eof; Returns the value True if there are no records left in your table.

tbIName.Eof;

Onceyouhave selected the correctrecord, you can use the tableName['fieldName’]
syntax to read the fields’ data. The code below shows an example of these
methods being used.

Using the data methods
dbmData.tblName.First;
while not dbmData.tblName.Eof do
begin
sValue := dbmData.tblName['fieldName'];
dbmData. tblName.Next;
end;

MODIFYING THE DATA FROM A DATABASE

e To modify data saved in a database:

e Select the record you want to modify.

e Set the record to edit mode (using the Edit method).
e Set the new values for the record.

e Post the new values to the database.

The following code shows how this can be done, using the Locate method to
select the correct record.

Modifying data

dbmData.tblName.First;
dbmData.tblName.Locate('fieldName', searchValue, []);
dbmData.tblName.Edit;

dbmData.tblName['fieldName'] := newValue;
dbmData.tblName.Post;

TERM 1 | CHAPTER 1 PROGRAMMING FUNDAMENTALS | UNIT 1.5 Dafabases

To see how a database can be used in practice, work through the following
example.

m Big Bucks setup

You and a group of friends have decided to create Big Bucks, an application to track
debts within your circle of friends. The application will record every payment between
friends and automatically determine if a payment is a new loan or a repayment.

To create Big Bucks:

1. Open a new application and save it in the folder 01 — Big Bucks.

2. Create the following user interface.

@ Big Bucks - (] X

Make Payment

The box on the right of the table is a TStringGrid component called graBigBucks.
3. Create a new data module called bigBucks_d.pas.
4. Change the name property of the data module to abmBigBucks.

5. Add a TADOConnection component to the data module (called conBigBucks) and a
TADOTable component to the data module (called tb/BigBucks).

6. Add a TDataSource component to the data module called sorBigBucks.
7. Copy the BigBucks.mdb database from your teacher to your project’s folder.

8. Select the conBigBucks connection and click on the [Edit ConnectionString] button
at the bottom left of the Object Inspector.

9. Click on the Build button.
10. Select the Microsoft Jet 4.0 OLE DB Provider option and click Next.

INFORMATION TECHNOLOGY | GRADE 12 |

m Big Bucks setup continued

11. Use the ... button to select the “BigBucks.mdb” database then click on the [Test
Connection] button.

Data Link Properties X
Provider Connection Advanced Al

Specify the following to connect to Access data:
1. Select or enter a database name:

||de 12 Practical - Stefan'\05 - Big Bucks"\BigBucks de]l—‘

2. Enter information to log on to the database:

User name: |Admin ‘

Password:

Blank password [_] Allow saving password

‘ Test Connection ‘

OK || Cancel | Hep |

12. If the test is successful, click on the OK button, then click on the OK button in the
Connection String window.

DataModulel.conBigBucks ConnectionString X
Source of Connection
(O) Use Data Link File

Browse...

(@ Use Connection String
[.EDB:Compact Without Replica Repair=False; Jet OLEDB:SFP=False;

e

|0K|Cmcd|Hdp|

TERM 1 | CHAPTER 1 PROGRAMMING FUNDAMENTALS | UNIT 1.5 Dafabases

el ERNPAN Big Bucks setup continued

13. Change the connection’s LoginPrompt property to False and the Connected property to True.
14. Select the tbiBigBucks table component.

15. Change the Connection property to conBigBucks, the TableName property to Payments and the Active property
to True.

16. Select the sorBigBucks component and set the DataSet property to thiBigBucks.
17. Open the code editor of the bigBucks_u unit.
18. Add bigBucks_dto the USES section of the code. This imports the data module into your unit.

uses
Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants,
System.Classes, Vcl.Controls, Vcl.Forms, Vcl.Dialogs, Vcl.StdCtrls,
Vcl.Grids, bigBucks d;

19. Select the grdBigBucks component and set the DataSource property to SorBigBucks.
20. Save and run your application. You should see the headings from your Payments table in your string grid.

@ Big Bucks - m} X

L 1

Amount:

I

bin] sender receiver payment creation_da' repayment_

Make Payment

Congratulations, you have just created the database connection for your application. In the next activity, you will
create the code that uses this database.

el ENRERN Big Bucks code

In the previous example, you set up the database connection for your Big Bucks application. In this example, you will

allow users to add a payment of money between two friends. This payment will have one of three impacts:

e |f no current debt exists between the two friends, the payment will record a new debt between the friends.

e [f receiver already owes the sender money, an additional debt will be created.

e |f the sender owes the receiver money, the payment will be used to first pay-off this debt (and any other debts
that are found). If money is left over, a new debt will be created between the sender and receiver.

INFORMATION TECHNOLOGY | GRADE 12 |

m Big Bucks code continued

To create this application:
1. Open the project saved in your 01 — Big Bucks folder.

2. Save the values entered into the three text boxes into variables called sSender, sReceiver and rRemainder.
3. Add the following conditional statement to your code.

Appending condition

if rAmount > O then

begin
dbmBigBucks.tblBigBucks.Append;
dbmBigBucks.tblBigBucks['sender'] := sSender;
dbmBigBucks.tblBigBucks['receiver'] := sReceiver;
dbmBigBucks.tblBigBucks['payment'] := rAmount;
dbmBigBucks.tblBigBucks['creation_date'] := Now;
dbmBigBucks. tb1BigBucks.Post;

end;

This conditional statement checks if the amount in rAmount is positive before adding the data to the database. While
this condition may not be relevant right now, it will be used later to check if there is any money left after a
repayment was made. It is important to remember that, when you add a record to a database, start with the Append
(or Insert) function and end with the Post method. The lines in between these two statements specify the values that
need to be added to the different database fields.

4. Save and test your application. You should now be able to add debts to the database.
@ Big Bucks - 5| X

Sender:

1D sender receiver payment creation_da' repayment_
| Anele |

11 Anele Stefan 500 23012019
Receiver

Istefan |

s —

[Make Payment]

The next step is to check if a payment can be made against an existing debt before any new debts are made.

To do this:

5. Before you append the data, read the first record of the database. This can be done using the dbmBigBucks.
tblBigBucks.First method.

6. Create a WHILE-DO loop that repeats while the database is not at the end of the file and while rAmount is
larger than 0.

7. At the end of the WHILE-DO loop, use the table’s Next method to move to the next record in the database.
Without this line, the WHILE-DO loop may continue running forever.

TERM 1 | CHAPTER 1 PROGRAMMING FUNDAMENTALS | UNIT 1.5 Dafabases

Sl ERNERS Big Bucks code continued

WHILE-DO-loop

dbmBigBucks.tblBigBucks.First;

while (not dbmBigBucks.tblBigBucks.Eof) and (rAmount > 0) do

begin
// Check if an existing debt exists between the sender and receiver
// Check if the existing debt is equal to the current payment
// Check if the existing debt is larger than the current payment
// Check if the existing debt is smaller than the current payment
dbmBigBucks.tblBigBucks.Next;
end;

8. Create a conditional statement inside the WHILE-DO loop to check if the payment is a repayment of debt.

You know that the payment is a repayment if the database contains a record where the current sender was the
receiver, while the current receiver was the sender. This means you need to read each record inside the while
statement and see if this condition is met.

IF-THEN statement
if (sSender = dbmBigBucks.tblBigBucks['receiver']) and (sReceiver =
dbmBigBucks.tblBigBucks['sender']) then
begin
// Store value of existing debt
// Check if the existing debt is equal to the current payment
// Check if the existing debt is larger than the current payment
// Check if the existing debt is smaller than the current payment
end;

9. When a record is found where this condition is met, store the value of the payment field in a variable called
rExisting.

10. Create a condition to check if rAmount is greater than or equal to rExisting.
11. Inside the condition, run dbmBigBucks. thiBigBucks.Delete method to delete the selected record.
12. Set the value of rAmount to equal rAmount minus rexisting.

Cancelling a debt
if rAmount >= rExisting then

begin
dbmBigBucks.tblBigBucks.Delete;
rAmount := rAmount - rExisting;
end;

Taking a look at this code, the condition checks if the amount paid is enough to fully repay the debt. If it is, the
existing debt record is deleted and rAmount is adjusted to reflect the debt that has been repaid. If there is any
money left in rAmount, the WHILE-DO loop will continue looking through the database to see if there are additional
debts to repay. If there are no debts to repay, the WHILE-DO loop will exit. Since rAmount is still larger than 0, a new
debt will be added to the database.

13. Save and test your application. You should now be able to remove debts by making a payment in the opposite
direction.

14. Create a condition to check if rExisting is smaller than rAmount. This will mean that the debt is not fully repaid
and needs to be adjusted based on the amount repaid.

15. Inside the conditional statement, run the command dbmBigBucks. tbiBigBucks.Edit to edit the table.
16. Set the payment field of the table equal to rExisting minus rAmount.

INFORMATION TECHNOLOGY | GRADE 12 |

el ENRERS Big Bucks code continued

17. Set the repayment _date field equal to the date returned by the Now function.

18. Use the Post command to make these changes to the database.

19. Set rAmount equal to 0, since all the money has been used to repay the debt.

Partially repaying a debt

if
be

en

rAmount < rExisting then
gin
dbmBigBucks.tb1BigBucks.Edit;
dbmBigBucks.tblBigBucks['payment'] := rExisting - rAmount;
dbmBigBucks.tblBigBucks['repayment_date'] := Now;
dbmBigBucks.tblBigBucks.Post;

rAmount := 0;
d;

Since rAmount will always be 0 for a partial repayment, the WHILE-DO loop will end once this payment is made and
no additional changes will be made to the database.

20. Save and test your application. You should now be able to add debts, fully repay debts and partially repay debts.
& BigBucks - a X
Sender: jin} sender receiver payment cr:atiun_ﬂa'. repayment_
e e
Receiver
Herman 650 23/01/2019 23/01/2019
Herman 250 23/01/2019
Amount:
e
Stefan 850 23/01f2019 23/01/2019

Make Payment

Congratu
transfers

lations, you just created an application that can easily store hundreds (or even thousands) of money
between people! To do this, you needed to create a database connection, add information to the database,

read information from the database, and modify existing data on the database.

Database

Q& Activity 1.6

s will be covered in more detail in Chapter 4.

Answer the following questions using pen and paper.
1.6.1 Which two Delphi components are needed to connect to a database and database table?

1.6.2 Which Delphi component can be used to display the data from a database?

1.6.3 Write down Delphi commands to do the following:

a.

b
c
d
e

Select the next record in a table.
. Set the value of the database field Name to Kagiso.

. Check if the database field Number has a value of 7.

. Save changes made to the database.
Read each record in a table.

TERM 1 | CHAPTER 1 PROGRAMMING FUNDAMENTALS | UNIT 1.5 Dafabases

O\ BRI 0\ WAE IINSS Chapter 1: Programming fundamentals

QUESTION 1

Komani Game Reserve in the Eastern Cape offers accommodation and the chance to see three of the ‘Big Five’
animals. Do the following:

e (Open the incomplete program in the 01 — Question1 folder.
e Compile and execute the program. The program has no functionality currently.
e Follow the instructions below to complete the code for QUESTION 1.1 to QUESTION 1.5.

1.1 Anpicture file called elephant.png has been included in the root folder of the Question1_p Delphi project.
Write code for the following:
Display the text “KOMANI GAME RESERVE” on pniHeader.

e Change the colour of pniHeaderto black.

e (Change the font colour of pniHeader to white.

e Display the elephant.png picture on the imgQ7_7 component.

e Disable binQ1_1.

Example output:

KOMANI GAME RESERVE
QLTION .3
] Avcomlation®

Aecomum el atan (eamy Numader of naghts
2 Ohalet - slowpa 3 e -
L Ohalet - slewge 4

1.2 The game reserve is situated on a rectangular piece of land and the dimensions of the reserve are as
follows:

e length: 40.4 km
e width: 27.8 km

The values for the length and width of the game reserve are stored in two global constants called
dReservelLength and dReservelWVidth, respectively.

Calculate the perimeter of the game reserve and display the result on /b/Q7_2A in the following format:

PERIMETER: <calculated perimeter> km

The surface area of a rectangle is calculated with the following formula: A =W x L
Calculate the surface area of the game reserve and display the result on /b/Q7_2B in the following format:

SURFACE AREA: <calculated surface area> square km

Example output:

QUESTION 1.2

PERIMETER: 136.4 km
SURFACE AREA: 1123.12 square km

INFORMATION TECHNOLOGY | GRADE 12 |

LB R YR\ P IIN8S Chapter 1: Programming fundamentals continued

Visitors who want to spend more than 1 day in the reserve have a choice between the following two
accommodation options:

OPTION RATE

Chalet — sleeps two R1 050.00

Chalet — sleeps four R1 850.00

Write code for the following:

e (Check whether the user has indicated that accommodation is required in the coxAccommodation

component.

In case the user has indicated that accommaodation is required, check which accommodation option was

chosen in rgpChaletOption and extract the number of nights he/she needs accommodation for from

sedNumNights.

Calculate and display the cost of accommodation on pn/Q7_3. If the user did NOT indicate that

accommaodation is required, display the text “NO ACCOMMODATION” on pn/Q7_3.

Example output:

QUESTION 1.3

4] Accomodation?

Accommodation Options Number of nights:
® Chalet - sleeps 2

1 :J
O Chalet - sleeps 4 IS

QUESTION 1.3

[Accomodation?

Accommodation Options Number of nights:
(® Chalet - sleeps 2
O Chalet - sleeps 4

o Kl

NOACCOMMODATION

QUESTION 1.3

4 Accomodation?

Accommodation Options Number of nights:
O Chalet - sleeps 2
(® Chalet - sleeps 4

Cost of accommodation: 3700

2]

TERM 1 | CHAPTER 1 PROGRAMMING FUNDAMENTALS | UNIT 1.5 Dafabases

(OB RDY 0\ WA e IINAS Chapter 1: Programming fundamentals continued

1.4

The game reserve hosts three of the Big Five. These are elephants, buffalo and lions. Visitors are able to
report sightings, which give other visitors an idea of which animals there are to see on a given day. Sightings
are compiled into a string of keys (single characters) that indicate which animals have been sighted.

Each key in the string represents the following animals:

KEY ANIMAL
B Buffalo
E Elephant
L Lion

Buffalo and elephant sightings are common, but lion sightings are rare.

Write code for the following:

e Extract the sightings from edSightings.

e Use the string of keys to create a list of animals sighted and display this list on red@7_4.

e Count the number of lion sightings and display the result on a message box in the following format:

Lion sightings: <number of lion sightings>

Example of output if EEBEBEEBLEELB was entered as the sightings string:

Elephant
Elephant
Buffalo Lion sightings: 2
Elephant

Buffalo

Elephant

Elephant
Buffalo
Lion
Elephant
Elephant
Lion
Buffalo

Example of output if EBBEBL was entered as the sightings string:

Elephant
Buffalo

Buffalo Leson sightings: 1
Elephant

Buffalo

Lion

Questionl_p

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

LB R YR\ P IIN8S Chapter 1: Programming fundamentals continued

1.5 Potential visitors need to be able to make a reservation. A reference code needs to be generated for each
reservation.

Reference codes are compiled as follows:

e The first part of the reference code is a hash-symbol (#).

e The second part of the reference code is a random number ranging from 1000 to 9999 (both inclusive).

e The third part of the reference code consists of the first two letters of the visitor’s surname. Both letters
are in UPPER CASE.

Write code for the following:

e Test if the visitor's surname is entered in the edtSurname component. If edtSurname is empty, display
an appropriate error message and set the focus to edtSurname.

e |[fthe visitor's surname is entered, extract it from edtSurname and generate a reference code.

e Display the reference code on pnlQ7_5.

Example output:

QUESTION 1.5 REF CODE: #8999MO0

Surname:
‘Moloko

QUESTION 2 Database manipulation

This section consists of two questions. The following important notes are applicable to both questions:
You are NOT allowed to modify or add to the supplied data in any way.

Good programming techniques must be applied when coding your solutions.

NO marks will be assigned for hardcoding. Use control structures and variables where necessary.
NO FILTERS MAY BE USED.

SCENARIO:
The HealthActive gym is currently running a healthy living program where a member’s health status is captured
and checked.

The Health.mdb database contains one table called Members.
The Members table is structured with the following fields:

FIELD DATATYPE DESCRIPTION

AccNumber Text A unique account number that consists of the first 3 letters of the member’s
surname, followed by the member’s initial and a random 3-digit number.

MemberName | Text Contains @ member’s name and surname.

Email Text Contains a member’s email address

JoinDate Date Contains the date (YYYY/MM/DD) on which the member has joined the health
program.

Gender Text Describes a member’s gender as Male or Female.

Height Number Contains a member’s height in centimeters.

Weight Number Contains a member’s weight in kilograms.

Smoke Boolean Describes whether the member is a smoker(Yes) or non-smoker (No).

TERM 1 | CHAPTER 1 PROGRAMMING FUNDAMENTALS | UNIT 1.5 Dafabases

v
Take note

Connection code has
been provided.

When the
btnDBRestore button is
clicked, the data in the
database will be
restored to the

original data.

The name of the table
to be used in your code
must be tbIMember,
which is the TADOTable
object connected to the
database.

L\ BRIy R0\ WA I\INES Chapter 1: Programming fundamentals continued

Example data from the Members table:

Ace - . Email = JoinDate - Gender - Height - Weight - Smoke »
SChT663 Troy Schukert 1schuken2i@omoz.org 2018/10/21 Female 176 72 NO
RoglL762 Lorry Roggers Iroggers2@etsy.com 2018/10/17 Male 169 48 Yes
RonW400 Whitaker Ronchka wronchkali@dyndns.org 2018/10/10 Male 161 49 Ne
HavG238 Gilberte Haville ghavilled@bbb.org 2018/10/03 Male 152 80 Yes
JedC931 Callean Jedrych cjedrych20@nbenews.com 2018/08/12 Male 159 82 Yes
RosB237 Barton Roscher broscherlx@scribd.com 2018/08/09 Female 154 i) No
Shawas2 Waiter Sharrock wsharrock20@salon.com 2018/07/27 Male 155 81 No
ScyF392 Faustine Scyner fscynerld@gov.uk 2018/06/27 Female 171 70 No
CurAg28 Austina Curran acurranlj@hc360.com 2018/06/13 Male 155 85 Yes
HarB361 Bebe Harkus bharkus2p@columbia.edu 2018/05/30 Female 148 57 No
At . = email + JoinDate « Gender = Height = Weight = Smoke =
SCNTB63 Troy schukert sChukeni@omoz.org 2018/10/21 Female 176 72 NO
RoOgL762 Lorry Roggers Iroggers2@etsy.com 2018/10/17 Male 169 48 Yes
RoNWA400 Whitaker Ronchka wronchkali@dyndns.org 2018/10/10 Male 161 49 No
HavG228 Gilberte Haville ghavillea@bbb.org 2018/10/02 Male 152 20 Yas
JedC931 Callean Jedrych ciedrych2o@nbenews.com 2018/08/12 Male 159 82 Yes
ROsBZ3S Barton Roscher broscherlx@scnbd.com 2018/08/09 remale 14 w No
Shawa42 Waiter Sharrock wsharrock20@salon.com 2018/07/27 Male 155 81 No
ScyF392 Faustine Scyner fseynerld@gov.uk 2018/06/27 Female 171 70 No
CurA828 Austina Curran acurranj@hcis0.com 2018/06/13 Male 155 85 Yes
HarB361 Bebe Harkus bharkus2p@columbia.edu 2018/05/30 Female 148 57 No

Do the following:

e Compile and execute the program in the 01 — Question2 folder. The program
currently has limited functionality

e Complete the code for each question as described in [Question 2.1] and
[Question 2.2].

e The program contains a graphical user interface with two-tab sheets labelled
[Question 2.1] and [Question 2.2].

2.1 Data processing
Select tab sheet [Question 2.1], which displays the following user interface
when the program is run:

& Question2 - O X

AceNumbor|Monbariiane [Emasn [101nDats |Gender[Hoighe [Height [smeke| ~
M| GerCE20 Cirilo Gerckens cgerchensdfig.co.uk W15/02/15 Male 155 48 True
'_vleﬂ?ds brighas Pl bpl izl jp ol0/04 02 Fesale 163 0G false
| |Mounss? Maitilde Moulden mmouldenaibloglovin.com 2016/04/09 Male 168 65 False
i es- 1 Duncan Lesseljong dlossel jongbfisymantec.com 2914/04/26 Female %2 6 True
L] Alianis andric Aliberti aaliberticfdrapbax. com w7/11/14 Male 1% £5 Falee
| |vovmes Margaux votier mvotieragaigg.com duirieasir Hale 167 63 False
L MidEcos Ewmyw Middlewass eviddlessccofindd . con 2017/00/30 Female 150 4 True

v

Question 2.1.1 Sort
© Join Date (Newest firse)
© Customer A o Z

Drat2Rd 2.1.2
223 | 2.1.4 |

Restore Database

Complete the code to meet the requirements specified in QUESTION 2.1.1 to
QUESTION 2.1.3

2.1.1 Radiogroup [2.1.1]

Write code for the OnClick event of the radiogroup that will sort the contents of
the Members table and display it on the database grid called abgTable as
follows:

e Radiobutton 1: From newest to oldest according to the join date.

e Radiobutton 2: Ascending order of customer names and surnames.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

LB R YR\ P IIN8S Chapter 1: Programming fundamentals continued

2.1.2

21.3

214

The user will be asked to enter an account number. Write code to search the database table to
check if the member’s account number appears in the table. If it is found, the date on which the
member joined the program must be displayed in the following format:

Example of output if Account number: DreS284 is typed into edtSearch.

frmquestion2_p X

Shanda Dreakin joined on 2018/05/28

If the record is not found, a suitable message must be displayed.

A person’s body mass index (BMI) is a measure for indicating nutritional status in adults. It is defined
as a person’s weight in kilograms divided by the square of the person’s height in metres (kg/m?). For
example, an adult who weighs 70 kg and whose height is 1.75 m will have a BMI of 22.9.

70 (kg)/1.752 (m?) = 22.9 BMI
For adults over 20 years old, BMI falls into one of the following categories:

BMI NUTRITIONAL STATUS
Below 18.5 Underweight
18.5-24.9 Normal

25.0-29.9 Overweight

30.0 or higher Obese

Write code to display a list of all members their BMI rounded to 1 decimal and their respective
nutritional health status, neatly in columns on the redOutput.

Example output:

Member BMI Status
Cirilo Gerckens 20.9 Normal
Brigham Pleasants 32.4 Obese
Maitilde Moulden 23.0 Normal
Duncan Losseljong 26.@ Overweight
Andris Aliberti 25..7 Overweight
Margaux Votier 23.3 Normal

Write code to calculate and display on the redOutput which percentage of male members are
smokers.

Display:

e the number of male members who are smokers
e the percentage of the male members who are smokers rounded to two decimals places
e the total number of members in the table.

Example of output:

Male Smokers: 20 out of 48 = 41.67%
Total Members: 160

TERM 1 | CHAPTER 1 PROGRAMMING FUNDAMENTALS | UNIT 1.5 Dafabases

(OB RDY 0\ WA e IINAS Chapter 1: Programming fundamentals continued

2.2 Data maintenance
Select tab sheet [Question 2.2], which displays the following user
Question 2.1 Question 2.2 |
AccNumber|MemberName |Email JoinDate |Gender |Height |Weight |Smoke| ~
L IsaM774 Malinde Isacke misacke2jfibhs.gov 2015/04/10 Fesale 169 B4 True
a shicses Gisele Shillington gshillington2k@mit.edu 2016/86/10 Female 175 51 False
| [HenI446 Ingasar Henriet ihenriet2l@eultiply.com 2013/12/01 Female 176 48 False
L] Ridag2s Alistair Ridout aridoutlm@jindo.com 2017/07/82 Hale 169 61 False
| |Prar7es Marge Pragnell mpragnelfstudpress.com 2013/83/06 Female 163 59 False
| JedCa31 Callean Jedrych cjedrych2ofinbcnews . com 2018/88/12 Male 159 82 True
HarB361 Bebe Harkus bharkus2piicolusbia.edu 2018/05/30 Female 148 57 False
Gayle Greenly gereenly2giintel.com 20814/01/18 Male 173 65 False
g,
Member Name: E-mail Date joined Height in em Weight in kg
[Peter Williams [pswillismsgmail.con [2018/20/30 [178 3] s 2 pele]
~ Seoke
2.2.3 |

Complete the code to meet the requirements specified in QUESTION 2.2.1 to QUESTION 2.2.3.

2.2.1 The email address for the member with member number PraM786 has been incorrectly captured as
mpragnell2n@studiopress.c. Add code to correct the email address to mpragnel@studpress.com

2.2.2

223

QUESTION 3

You want the user to be able to delete the record that he/she selects. Write the code to delete the
current record from the table. Keep track of the name of the member that will be deleted. Display a
message once the record has been deleted, as follows (if the third record in the table was selected):

frmquestion2_p x

The record of Umberto Osman has been deleted

o]

The details of a new member have been supplied in the appropriate components. Complete the
code to insert this member into a new record in the table. The account number must be constructed
using the first 3 letters of the surname, the member’s initial and any random 3 digit number

(between 100 and 999).
Member Name: E-mail Date joi Height in em Weight in kg
[Peter Williams [pswilliansggmail.con [2018/20/30 [r7s T3] [7s 3 e <]
W smoke

SCENARIO

You have been asked by the organisers of a Gymnastics competition in Strand to complete a program to
manipulate the numbers of learners from 10 schools in the vicinity who are taking part.

Open the project in the folder 01 — Question 3 folder.

e The incomplete main form unit called Question3_u.pas

e Currently the program has no functionality.

An incomplete form class Question3_u is provided with the following graphical user interface:

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

LB R YR\ P IIN8S Chapter 1: Programming fundamentals continued

Complete the code for each section of QUESTION 3 as specified in QUESTION 3.1 to QUESTION 3.4 below.

@ School paticipation - a X
Q 3.1 Desplay Schools

Display Information

Q 3.2 Sorted Lists

Show Sorted List

Q 3.3 School Codes

Generate School Codes

Q 3.4 Search

Search Spedific School

In the given program the following two global parallel arrays have been created:

e a String array called arrSchools with the names of the ten schools that have registered to take part.
e an Integer array called arrNumGymnasts with the number of the learners from each school who will be

competing.

3.1 When this button is clicked a call to the DisplayArrays procedure is made.

Do the following:

e (Create a procedure called DisplayArrays that will receive the heading as a parameter.

In the implementation of the procedure:
e (display the heading as indicated in the parameter

e Joop through the two given arrays and display the information in two columns in the rich edit redOutpurt,

as indicated in the binDisplayClick event handler

e (Call the procedure and use the heading “The schools participating” in the parameter to display the

information.

e Add code to determine and display the total number of gymnasts.

Example output:

Q 3.1Display Schools The schools particpating:

2 7 Gordon High School
I Display Information Paul Roos Gymnasium
Parel Vallei High School
Hoérskool Strand .
S - Khanyolwethu High School
Rhenish Girls' High School
Show Sorted List Macassar High School
Hottentots Holland High School
Hoérskool Stellenbosch

Q 3.3 School Codes The total number of gymnasts:

23
3
42
31
18
35
21
26
40
34

308

TERM 1 | CHAPTER 1 PROGRAMMING FUNDAMENTALS | UNIT 1.5 Dafabases

7

Take note

e Your code should
provide for the fact that
each user might type
the name of the school
in a different case
(lower and/or
upper case)

e [fthe name of the
school was not found,
an appropriate
message should be
displayed in the
rich edit.

L\ BRIy R0\ WA I\INES Chapter 1: Programming fundamentals continued

3.2 The organisers want a list of the schools with the number of gymnasts sorted
from lowest to highest as indicated in the screen shot below. Write the code to
sort the arrays to achieve this.

Use the DisplayArrays procedure with the appropriate heading as a parameter
to display the sorted list.

Example output:

Q 3.1 Display Schools The schools in order of number of gymnasts
= = Hoérskool Bloemhof 18
Display Information Rhenish Girls' High School 21
Gordon High School 23
Macassar High School 26
3.2 Sorted Lists Hogrskool Strand 31
Q Hoérskool Stellenbosch 34
| Khanyolwethu High School 35
I Show Sorted List I Paul Roos Gymnasium 38
Hottentots Holland High School 40
Parel Vallei High School 42

3.3 The organisers want a code for each of the schools. The code consists of the
first letter of each of the words of the school’s name and a random number in
the range 100 to 999 (both included), for example, RGHS367 for Rhenish Girls’
High School.

Do the following:
e (reate a function called GenerateCode that will receive the name of the school as
a parameter and return the generated code.

In the implementation section of the function extract the first letter from each word in
the name of the school and then add a randomly generated number between 100 and
999 (both included).

In the btnCodeClick event handler loop through the array called arrSchools, call the
GenerateCode function for each of the schools in the list and display the generated
codes as indicated in the screenshot below:

Q 3.1Display Schools The codes for the schools:
: Gordon High School GHS877
Display Information Paul Roos Gymnasium PRG477
Parel Vallei High School PVHS990
Hoérskool Strand HS852
3.2 Sorted Lists Hoérskool Bloemhof HB385
Q v Khanyohwethu High School KHS703
Rhenish Girls' High School RGHS940
Show Sorted List Macassar High School MHS805
Hottentots Holland High School HHHS204
Hoérskool Stellenbosch HS606

3.4 You want the user to type in the name of a school and then determine and
display how many learners from that school are competing. Use an /nputbox to
get the name of the school to search for, and then display the number of
learners competing in redOuput, as indicated in the screenshot below.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

LB R YR\ P IIN8S Chapter 1: Programming fundamentals continued

Example output:

Search

Enter the name of the school:

{Macassar High School

[] concel
Search

Enter the name of the school:

| Macassar High School

[oc][conce

Macassar High School has 26 learners competing

Macassar High School has 26 learners competing

QUESTION 4

SCENARIO:

Your principal asked you as an IT student to help write a program which will determine whether anyone in your
school has a birthday on any given day. He wishes to use the program every morning before school to check

whose birthdays he has to announce today.

Do the following:

e Compile and execute the program in the 01 — Question 4 folder.
e Complete the code for each question, as described in QUESTION 4.1 to QUESTION 4.3.

Supplied GUI:
(@@ Question4 = X @ Question 4 = O
Check Birthdays Add Birthday Check Birthdays = Add Birthday

Year Month Day

|20 18 | IOQ ‘ |20 MName Day
Surname Month
[| | |
Gender (M/F) Year

TERM 1 | CHAPTER 1 PROGRAMMING FUNDAMENTALS | UNIT 1.5 Dafabases

O\ BRIy R0\ WA I\IN8S Chapter 1: Programming fundamentals continued

4.1 Add code to the On Create event handler of the form to do the following:
4.1.1 Display the current (today’s) date in the edit boxes provided

4.1.2 Check if the file, Birthdays.txt exists. Display a suitable message if the
file does not exist.

The text file contains data in the following format:

Name, Surname,Gender,Year-Month-Day

Example of the first 5 lines:

Noluvo,Mdlungwana,F,2001-07-12
Laureka,Wallace,F,2000-03-01
Michelle,van Heerden,F,2001-05-23
Maria,Kok,F,2000-09-19
Brewster,Attew,M,2001-12-09

4.2 Work on the [Check Birthdays] tab sheet. Add code to the event handler of
btnDisplay.
4.2.1 Create suitable variables for each component of a line from the text file

4.2.2 QOpen the Birthdays.txt file for reading. Assign this file to the given
global text file variable, tfBirthdays.

4.2.3 Ensure that all the data is removed from redBirthdays when the button
is clicked.

4.2.4 Make use of variables to store the current year, month and day. Ensure
that the program will still work if any other day of the year is entered.

4.2.5 Loop through the text file and determine if any of the entries are on the
date entered in the edit boxes. Display the name, surname and age of
the records that match.

4.2.6 Determine the total number of birthdays for this day and display it with
the output.

Example output: (for the date 2018/08/16)

{@ Question 4 =] X
Check Birthdays ~ Add Birthday
Year Month Day
2018 | |08 | |16 |
o]

Kerrill Lemerie is 17 years old on this day.
Milli Nester is 17 years old on this day.

Total birthdays: 2

INFORMATION TECHNOLOGY | GRADE 12 |

LB R YR\ P IIN8S Chapter 1: Programming fundamentals continued

4.3 Study the interface for the [AddBirthday] tab sheet

@ Question 4 - 0o X

Check Brthdays Add Birthday

Name Day
[| E |
Surname Month
l | | |
Gender (MfF) Year

Add Birthday

4.3.1 Write code for the [Add Birthday] button to extract all the information
from the components.

Add validation to check that only ‘M’ or ‘F* was added to edtGender.
Display a message if anything else was added.

Questiond_p

Please enter "M" or "F" in the Gender field,

4.3.2 Once the button is clicked, the student’s information has to be added to
the text file, and a suitable message has to be displayed.

Questiond_p

Ohann van Dyk has been added.

TERM 1 | CHAPTER 1 PROGRAMMING FUNDAMENTALS | UNIT 1.5 Dafabases

L\ BRIy R0\ WA I\INES Chapter 1: Programming fundamentals continued

QUESTION 5

5.1 Which type of loop can be used to read each entry in an array?
a. CASE
b. FOR-loop

5.2

53
5.4
515

c. REPEAT-loop
d. WHILE-DO loop
Determine which of the following are objects, properties or events.

EXAMPLE TYPE
TButton

Top

Caption
OnClick
TADOQuery

Give an example of a binary variable.
Name ONE way of preventing programming errors.

A user is required to input a FOUR-character security code which contains ONE
alphabetical character and THREE digits. The first character must be
alphabetical, for example “D845”.

Write an algorithm, using pseudocode, to validate the code for the correct
format once the code has been entered. NOTE: Use at least ONE loop must be
part of your solution.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

OBJECT-ORIENTED

PROGRAMMING

CHAPTER UNITS

Unit 2.1 Defining a user-defined class

Unit 2.2 Using the class

Learning outcomes

At the end of this chapter you should be able to
e describe the class as a data type
e discuss the different access specifiers
e describe attributes and methods as part of a class
o define a class:
o add attributes to a class

o declare and implement methods in a class

e instantiate objects of the class
e yse the object in your application.

INTRODUCTION

In this chapter we will look at Object-Oriented Programming (OOP) in more
detail. To understand OOP and user-defined classes, think about your national
ID card. Each South African citizen is issued with an ID smart card using an 1D
blueprint.

AN R T S 7
(= Conditions: Do of f33u0: 20130030
e e i
ees Act, Act 1907 < . / y
7 7 m [V b

e ~ S

R it e e B S vt of S Ay ‘.‘.A_

789 e

|n %
A

& N
X

Figure 2.1: An ID card is like a custom class

Example of some of the details captured for your ID:

* photo ® identity number
® name ® nationality
® surname e date of birth

We refer to these data items as fields.

CHAPTER

O]
0OP IN DELPHI

https://www.youtube.com/
watch?v=gRUvQgIZ5jl

Watch out!

We use analogies to
describe the concept of an
object; don’t get too
attached to these
analogies. They only serve
to illustrate a point. Instead,
concentrate on drawing out
the abstract nature of an
object as we apply an
everyday term to a
programming technique.

@

New words

Object-Oriented
Programming (OOP) —
refers to a type of computer
programming (software
design) in which
programmers define not
only the data type of a data
structure, but also the types
of operations (functions)
that can be applied to the
data structure

TERM 2 | CHAPTER 2 OBJECT-ORIENTED PROGRAMMING

@

New words

attributes — the data fields
of the class

behaviour — the code that
provides the interaction
with the attributes

instances of the class —a
data type that describes the
attributes and behaviour of
the object to be model
electronically

encapsulation — the
grouping of attributes and
behaviour in one entity

The ID smart card can be:
® scanned to transfer the data on it
® presented to verify the person’s identity.

We say the fields used to gather data are attributes of the card and what the
card can be used for is the behaviour of the card.

The attributes and behaviour form a blueprint for creating an ID smart card.
We refer to the blueprint as a class. The instance of a class is referred to as an
object.

From the one blueprint each South African citzen can get an Identity
Smart Card i.e many Instances of the class or card objects can be created.
Like an array a class can have many data items, however whereas an array can
only have data ltems of the same type whereas a class can have data items of
different data types. As a record in a database has data items of different types,
so does the data items of a class. The grouping of data together with the functions
to interact with the data is called encapsulation.

A data type that describes the attributes and behaviour of the
object to be model electronically

OBJECT An instance of the class

CLASS

ATTRIBUTES

The data fields of the class

BEHAVIOUR
A\OAEENN S The grouping of attributes and behaviour in one entity

The code that provide the interaction with the attributes

OOP-techniques enable programmers to:

e create independent modules that are not influenced by other parts of the
program

e create reusable code

* improve the integrity of a program and its data.

In this chapter you will learn how to declare classes, implement its methods,
instantiate an object of the class and use the object’s methods in an application.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

UNIT

2.1 Defining a user-defined class

After the introduction, you might think that classes are a brand-new concept that
you will have to learn from scratch. Fortunately this is not the case. You have
been using multiple classes in every single program you have created, like the
TForm class. If you create a new Delphi project and open the code, you will see
the following lines near the top of your code.

The class keyword indicates
that TForm1 is of type class

Data types are
defined under the —> type
1ype of keyword TForml = class (TForm)
private
{Private declarations}
public
{Public declarations}
end; tpe definton
var
Forml: TForml; - -
~ Variable Form1 is declared

to represent an object of

implementation ype TForm1

{$R*.dfm}

end.

Figure 2.2: TForm1 class

By looking at the declaration of the TForm1 class above, you can see the basic

structure of a class definition, using the key words: Type, class, private,

public and end. These are the essential keywords for declaring a class and

implementation to provide it with behaviour.

e TForm1 has TForm as its base class.

* The keyword, private, marks the section where the attributes and methods
are declared, that should not be accessible from outside the class.

® The keyword, public, marks the section where we declare methods that
serves as the interface to the internal features of the class. These methods
are accessible from outside the class.

® The implementation section is where all the events, procedures and
functions are placed. Any active code that you want to execute should be
placed in this section.

USER DEFINED
OBJECTS

https://www.youtube.com/
watch?v=0uMu4dgJZ8M

74

Take note

Notice how the Form1
variable is declared to be of
type TForm1. An instance
of class TForm1, also called
an object, can be assigned
to Form1.

TERM 2 | CHAPTER 2 OBJECT-ORIENTED PROGRAMMING | UNIT 2.1 Defining a user-defined class

@

New words

Access specifiers —is a
defining code element that
can be determine which
elements of a program are
allowed to access a
specific variable or other
piece of data

DECLARING A CLASS

The code block below shows the basic structure of a class declaration.

Class declaration syntax

type

ClassName = class(optional BaseClass)

Private

//declare attributes and private methods here
Public

//declare public methods here

End;

In order to understand whether to declare a public or a private method, you need
to understand how access specifiers work. As their name suggests, access
specifiers tell your class which methods should be visible (or accessible) to units
outside the class, and which methods should only be visible inside the class.

There are four types of access specifiers:

ACCESS SPECIFIER DESCRIPTION

Private Private attributes and methods can only be accessed from inside
this class.

Protected Protected attributes and methods can only be accessed by this
class or any classes based on this class.

Public Public methods can be accessed in any program where this
class is used.

Published Published attributes and methods are very similar to public

attributes and methods, but may be changed from the RAD
Studio’s Object Inspector.

Class attributes or fields are only declared in the private section of the class. This
data hiding ensures that access is only given to class members and protects the
integrity of the data.

Once the attributes and methods have been declared, you need to write code to
implement the methods. This is done in the implementation section. Once the
methods are implemented your class definition is complete and ready to
be tested.

& Activity2.1

Answer the following questions in your own words:

2.1.1 Whatis a class?

2.1.2° What is an object?

2.1.3 Give an example of two classes that you have used in your programs.

2.1.4 Write down the syntax for declaring a class.
2.1.5 What is the difference between the public and private keywords?

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

‘ Activity 2.1 continued

2.1.6 Why should class attributes be private and not public?

2.1.7 Find the errors in the following basic class structure:

implementation

className : class(optional BaseClass);
Private

Attributel: String;

Method1l;
Public

Attribute2: Integer;

Method2;

To define a class in Delphi, you need to take the following steps:
e create a new unit file that will only contain the code for the class
* in the TYPE section name the class
® add attributes and methods in the PRIVATE section
® add methods in the PUBLIC section
o constructor method
o accessor (or getters) methods
o mutator (or setters) methods
o other auxiliary/helper methods
o ToString method for quick access to the state of an object.

Read the following case study, which will be used throughout this unit to look at each of the steps above.

Case Study Second-hand phones

Imagine you are building a web application that facilitates buying

and selling second-hand phones. Once the site is up and running, you
expect there to be hundreds of users selling and buying phones at any
time. You will recognise a phone as an entity similar to the ID-card. Each
phone has a number of attributes you need to record, including the
phone’s brand, the phone’s model number, the seller’s price and the
phone’s date of purchase. How would you store this information?

The best way to store this information is to encapsulate it in a custom
class named TPhone.

Your TPhone class might have the following essential properties:
® Brand: String

e Model: String

e Owner: String Figure 2.3: How would you store
e PurchaseDate: TDateTime the data needed to sell phones?
e Price: Double

We could also consider a method to work out the age of the phone. So the buyer can get a quick feel about the
value for money of the offer.

An object of the type TPhone can store the brand, model, owner, purchaseDate and price, together with methods to
access and manipulate it, such as a method that is able to return the age of the phone.

Once you have defined the TPhone class, you can create one or more TPhone objects in your application (or even a
list or array of TPhone objects). Each of these objects will contain a unique set of information and will represent
a phone.

TERM 2 | CHAPTER 2 OBJECT-ORIENTED PROGRAMMING | UNIT 2.1 Defining a user-defined class

CLASS UNIT FILE

The first step in creating your new application that facilitates buying and selling second hand phones (see
Case study above) is to create a new unit file for the new class. Just as a data module separates your data
from any specific form, the unit file separates the class from a form. This allows you to use the class in
multiple forms in a multi-form application and even in other applications. By separating the class from the
form, you keep the code clean, making it easier to keep track of your code and reduce the repetition
of code.

In order to create an object to be used in your application, a design specification for your model needs to
be written. This is then captured in a class diagram. The class diagram lists the attributes and behaviour

for all objects of the class.

CREATING A CLASS UNIT FILE

Open the project saved in the sellMyPhone folder.

When you open the project, you should see the following
user interface:

The white box on the right is a 7StringGrid component
from the Grids list. You are now ready to create the
class unit file for your project.

[et vty Prome - 8 X

SellMyPhone App

Brardname:

il

1. In RAD Studio, open the File Menu and select the
New option.

7

Take note

Your image might differ
slightly, depending on your
version of RAD Studio.

2. Select the Unit option. You will see a new unit
appear in the Project Manager panel in the top right
corner.

o
e

W ——

e

|

3. Now press <ctrl+shift+s> (save all), when
prompted name your Unit “PhoneClass” and save

The Pascal source file, PhoneClass.pas, for the newly
created unit will appear in the project manager, under
the form class.

the unit in your project folder named “SellMyPhone”.

‘Bunit PhoneClass;
‘B interface
- implementation

‘flend.

B SeMPhone.dro - PrjectHanages
B -2 @ -GSl 8
File
Z5 ProjectGroupl
& (F SellMyPhone.exe

() & Build Configurations

@ [B frmSelMyPhone.pas

&) PhoneClass.pas

e

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

In the case of our PhoneClass, the formal class diagram looks like this:

@ PhoneClass

e Attributes

0 brand: String;
0 model: String;
O owner: String;
O purchaseDate: TDateTime;
O price: Double;

o Methods

> Encapsulation

© procedure create; {default constructor}

© function getPrice: Double;

© procedure setPrice(price: Double);
© function calculateAge: Integer;

© function toString: String;

© procedure create(Brand, model, owner purchaseDate, listDate, price);

Behavior

As we develop the app, you will see how this directs the process.

A class definition is a coded version of the class diagram with all methods implemented. Once the class
has been defined, it can be used in an application like any other data type.

ADDING AN EMPTY CLASS DECLARATION

4. Between the Interface and implementation lines of
your code, add the following statement:

This imports the core utilities of Delphi into your class,
allowing you to use them.

unit PhoneClass
interface

uses SysUtils;
implementation

5. Underneath the uses line, you need to set your class
name in the Type section of the class. To do this, add
the following code type:

TPhone = class
private
public

end

This tells your program that you are defining a new
class of type “TPhone”.

unit PhoneClass;

interface

uses SysUtils

type

TPhone = class

private
public

end;

Implementation

End.

This is the last step needed to create your class unit and an empty class declaration. Save and run your application.

TERM 2 | CHAPTER 2 OBJECT-ORIENTED PROGRAMMING | UNIT 2.1 Defining a user-defined class

DECLARING THE ATTRIBUTES

6. Attributes are variables that hold the state of the object, the class models, and are declared like any other
variable — except they are put in the private section of the class declaration.

By placing the attributes in the private section, you ensure that they cannot be accessed by any units outside of
the class unit. The data is hidden and its integrity is protected. In the next section, you will see how values can
be added to these variables.

SYNTAX IMPLEMENTATION

unit name; Phone
interface unit PhoneClass;
uses interface
Imported Units uses SysUtils;
type type
ClassName = class TPhone = class
Private Private
attributel: datatypel; Brand: String;
attribute2: datatype2; Model: String;
. Owner: String;
methods PurchaseDate: TDateTime;
end; Price: Double;
Implementation
End. end;

Implementation
End.

Save and run your application, make sure there are no syntax errors in the code that was added.

DECLARING THE METHODS

Methods are the active code that bring behaviour to an object. Methods declared in the public section serves as an
interface to the object. Those declared in the private section, only assist internally with the implementation of the
behaviour.

7. A phone object needs to be created (constructed) for the user to interact with. A special method only used once
and started with the Delphi keyword constructor is used to instantiate the phone object. This method is usually
called create to give a clear sense of its purpose.

8. Now we declare the methods that will act upon the attributes.

Some of the data is fixed and cannot be altered. We consider the following use cases:

e Users need to get the Price in order to view it before and when making changes.

e Users need to set the Price in order to lower the price if the phone is not selling.

e Users need to find out the age of the phone. (Why don’t we store a value for the age?)

e Programmers may need to print out the state of an object. For this we use a function named toString that
return a string of all the values stored in the attributes.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

SYNTAX IMPLEMENTATION

unit Unit;
interface
uses Other units that the program
will depend upon
type
ClassName = class
(OptionalBaseClass)
(Default is TObject)
Private
{ Now declare attributes ..}
attributel: datatypel;
attribute2: datatype2;

{private methods here}
Public
{Now declare public methods here}
constructor name(Optional
parameters: datatypes);

procedure name(Optional parameters:

datatypes);

function name(optional parameters:
datatypes): datatype;

End;

Implementation

End.

Phone
unit PhoneClass;
interface
uses SysUtils;
type
TPhone = class
Private
Brand: String;
Model: String;
Owner: String;
PurchaseDate: TDateTime;
Price: Double;
Public
Constructor create;
function getPrice: Double;

procedure setPrice(price: Double);

function calculateAge: Integer;
function toString: String;
end;
implementation
end.

Save and run your application.

TERM 2 | CHAPTER 2 OBJECT-ORIENTED PROGRAMMING | UNIT 2.1 Defining a user-defined class

CREATING THE METHOD STUBS IN THE IMPLEMENTATION SECTION

Now that the basic class structure has been defined, we need to complete the definition by implementing the
methods listed. These methods will be coded in the implementation section, that is, underneath the
implementation keyword.

9. Place the cursor on the line constructor create; and press ctrl + shift+ C and watch how RAD studio generates a
method stub (an empty method) for all the declared methods. Placing the cursor on any one of the other method
declarations will also work.

10. If you make a change to the declaration of a method you must ensure that you make the same correction to the

implementation.
IMPLEMENTATION
Phone
unit PhoneClass; Unit Name
interface
. . Other units the program
uses SySUt”'S’ } will depend upon
type
TPhone = class Class definition
private
Brand: String;
Model: String;
Attribut
Owner: String; e

PurchaseDate: TDateTime;
Price: Double;
public]

constructor create; } Constructor
function getPrice: Double;

procedure setPrice(price: Double); Method declaration

function calculateAge : Integer;
function toString: String;

end;
Implementation
//method stubs
constructor TPhone.create; \
begin
end;

function TPhone. getPrice: Double;
begin
end;

procedure TPhone. setPrice(price: Double);

begin
End;

function calculateAge: Integer;
begin
end;

function TPhone. toString: String;)
begin

end;
end.

Save and run your application, make sure there are no syntax errors in the code that was added.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

ADDING CODE TO THE METHOD STUBS

The final step in defining the class is to provide it with behaviour, that is, the code to be executed when calling the
methods of the class.

11. We begin with the constructors. There are two versions: Default constructor and default values for each attribute
according to its data type, assigned by Delphi.

e Where we have data, the constructor receives them as parameters and assigns them to the attributes.
The constructor creates an instance of a class. This is called instantiation — it generates an object and initialises
the attributes of the object.

SYNTAX IMPLEMENTATION

constructor name(constructor create(
Parameters: datatype); overload; brand, model, owner: String;
purchaseDate: TDateTime;
Because we will now have two definitions for the price: Double); overload;

constructor, we need to tell the compiler about this, so we
add the overload keyword to both constructor declarations.

IMPLEMENTATION

In the class definition underneath the default constructor
insert the new constructor declaration and press
ctrl+shift+C to generate the stub for the Parameterised

Public
constructor create; overload;
constructor create(

constructor.

brand, model, owner: String;
It is helpful to use the full names of the attributes in the purchaseDate: TDateTime:
constructor’s definition. This makes it easier to identify the price: Double): overload;

attributes in the next step.

implementation
constructor TPhone.create(
brand, model, owner: String;
purchaseDate: TDateTime;
price: Double);
begin
Self.brand := brand;
Self.model := model;

Now complete the code for the constructor as indicated in
the right hand column.

Note: the Self keyword refers to the attribute of the phone.

Self.owner := owner;
Self.purchaseDate := purchaseDate;
Self.price := price;

Add the assignments as shown: end;

12. Now we add code to the body of the other methods to introduce behaviour into the object as follows:

getPrice returns the value of price which is stored as a

function TPhone.getPrice: Double;
Double. e

begin
result := price;
end;

SetPrice uses the parameter for price to set the value of

, , rocedure TPhone.setPrice(price:
the phone object’s attribute. P N 1ce(pri

Double);
begin
Self.price := price;
end;

TERM 2 | CHAPTER 2 OBJECT-ORIENTED PROGRAMMING | UNIT 2.1 Defining a user-defined class

CalculateAge returns an integer.

TimeDate: the current date is stored as the
number of days since 30 December 1899. We
can access it through the system variable, now.
Its decimal part represents the time.

Subtracting the purchaseDate from now, and
rounding the result gives the number of days
between them. This is then divided by 365 (div,

that is, integer division) for the number of years.

function TPhone.calculateAge: Integer;
var
numDays: Integer;

begin
numDays := round(now - purchaseDate);
result := numDays DIV 365;

end;

ToString returns a string representation of the
current state of the object, that is, the values of
its attributes.

We build the string using a simple format.

Use formatDateTime (‘dddddd’, date) to get the
date into a string format dd mmm yyyy, for
example, 05 June 2020.

Format the price as money.
Finally, we return it as a result.

function TPhone.toString: String;
var output: String;

begin
Output :=
'Brand: ' + brand + sLineBreak +
'Model: ' + model + sLineBreak +
'Owner: ' + owner + slLineBreak +
'"purchaseDate: ' + formatdatetime('ddd
ddd', purchaseDate) + sLineBreak +
'"Price: ' + Format('%m', [pricel);
Result := output;
end;

Save and run your application.

cell phone.

scenarios.

This completes the class definition, that is, class and attributes declared; all methods implemented.
The next step is to test the class. Once completed, it can then be used in any application that needs this model of a

Note: The design of this TPhone class was to solve a specific problem. Reusability is an important OOP principle.
You should always try to design a class with reuse in mind, so that your class can be used or be extended for other
scenarios. To best achieve reusability, you must only model the essential features that can be applied to many

@

New words

reusability —is an
important OOP principle.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

‘ Activity 2.2 Defining classes: Pen and paper

In each case, clearly indicate where in the class unit file the code to declare the class, the attributes and methods
should be placed.

Do not implement the methods.
2.2.1 A TCar class containing the attributes Model, Brand, Year, RetailPrice and the following methods:
a. A default and a parameterised constructor.
b. A getDetailedModel function.
c. A setRetailPrice procedure and getRetailPrice function.
d. A toString function.
e. A getVATPrice function.
Name the unit CarClass.

2.2.2 A TSong class containing the attributes Artist, Song, Album, TrackNumber and Duration (in seconds) and the
following methods:

a. A Default and a parameterised constructor.
b. Getters and setters for all attributes.
c. A toString method.
d. A getQuickReference method that returns a string.
e. A getMinuteDuration method that returns a string.
Name the unit SongClass.
2.2.3 A TQuadratic class for the class diagram given below:;

QuadraticClass

e Attributes

0 coefficientA: Integer;
0 coefficientB: Integer;
O coefficientC: Integer,

o Methods

O procedure create; {default constructor}

@ procedure create(coefficientA, coefficientB, coefficientC: Integer);
© function calculateRoots: String;

O function calculatediscriminant : Double;

© function hasRealRoots: Boolean;

©O function hasRationalRoots;

© function toString: String;

Name the unit QuadraticClass.

2.2.4 A TCone class according to the partial Cone class ConeClass
diagram given below. Complete the declaration of
the class, adding getters and setters that you

may need. 0 height
01 haseDiameter

e Attributes

Name the unit ConeClass.
e Methods

O {default constructor}
© {Parametrised constructor}

(o] SlantHeight ;
0 function baseRadius: =
o volume

o - surfaceArea___;

0 toString :

TERM 2 | CHAPTER 2 OBJECT-ORIENTED PROGRAMMING | UNIT 2.1 Defining a user-defined class

‘ Activity 2.3 Defining classes: Delphi projects

2.3.1 Open the project saved in the carPriceList folder. Add a unit CarClass and provide code to implement the TCar
class you wrote in Activity 2.2.1.

a. Complete the constructor, getters and setters you have generated.

b. The toString method returns a string that displays the lines attribute label: attribute value below each other.
c. The getDetailedModel function returns a string in the format Year Brand Model.

d. The getVATPrice function returns the car’s retail price multiplied by 1.15.

2.3.2 Open the project saved in the myPlaylist folder. Add a unit SongClass and implement the 7Song class you wrote
in Activity 2.2.2. Complete the class definition as follows:

a. Code the constructor, getters and setters you have generated.

b. The toString method returns a string that displays the lines attribute label: attribute value below each other.
c. The getQuickReference function returns a string in the format ‘Song, ~Album~Artist’.
d

. The getMinuteDuration function converts the song duration from seconds to minutes and seconds and
returns a string in the format mm:ss.

2.3.3 Open the project saved in the quadraticEquations folder. Add the unit QuadraticClass and code the class
definition you wrote in Activity 2.2.3. Implement:

a. The constructors.
b. CalculateDiscriminant.

discriminant = b? — 4ac

c. calculateRoots to return the roots in format, ‘x1 = 0.00 : x2 = 0.00".

Use the formula:
x_—biv’bz—*%ac
- 2a

d. HasRealRoots should return true if the discriminant is >= 0.
e. HasRationalRoots should return true if the discriminant is a perfect square.

. AtoString method to return the quadratic in the form: @x? 4+ bx + ¢ = 0
Hint: use chr (178) to display superscript 2.

2.3.4 Open the project saved in the coneCalculations folder. Add the unit ConeClass and code the class definition you
wrote in Activity 2.2.4. Implement the methods listed in the class diagram and the getters and setters you added.

$ = slant height Slant height:
S 2
3 f Volume: ¥ e
= radi b
h /= radlus ot base Surface area: h
=ar-
h = height 4 3
A=mr(r+s)

There are two possible implementations of cone calculations:

o Trigonometry, as exemplified by:
http.//mathcentral.uregina.ca/QQ/database/QQ.09.07/s/marijal.html

e Pythagoras, as exemplified by:
htips://mathbitsnotebook.com/Geometry/3DShapes/3DCones.himl

2.3.5 Update your TPhone class by adding getters for Brand, Model and Owner.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

LET’S REVISE
TERM AND DESCRIPTION CODE EXAMPLES
CLASS: type
. TPh =cl
e (ata structure designed to model the state and/ﬁ p‘:?sa tec ass
behaviour of a class of Object public
* when declared under the type keyword it becomes | eng-:
a datatype
o variables declared of this datatype can store
objects or instances of the class
ATTRIBUTES: type
. TPhone = class
e set of variables) rivate
e declared under the private keyword — Brand : String:
e variables can have different datatypes Model : String:
o refers to the state of the object Owner : String;
PurchaseDate : TDateTime;
Price : Double/Real;
public
end;
METHODS: type
L , . TPh =cl
e jtis used to allow an object to perform actions p‘:?satec ass
o will provide results to applications that are normally public
declared with public access so that they can be -7
‘called’ by application programs (e.g. main Form) function getPrice : Double;
o serves as the interface to an object within an
application
® s how the object receives data and gives ~ function toString : String;
information end;
o there are five basic types of methods:
- constructor methods
o accessor (or getters) methods
- mutator (or setters) methods
- auxiliary (or helper) methods
~ ToSting method
a. Constructor: type
.) TPh =cl
e amethod that is called to create the object, and p:?sa tec ass
instance of the class oublic
e through its parameters the object is assigned a constructor create (
unique initial state brand, model, owner : String;
e calling a constructor without parameters purchaseDate : TDateTime;
creates an object with default values price : Double/Real);
e must be called on the class name — not the
object name — as the object does not exist prior | " _
o this call Implementation
)) constructor TPhone.create (brand, model,
e the object created when the constructor is owner : String; purchaseDate : TDateTime;
called should be assigned to a declared object price : Double/Real);
variable, otherwise is will be dangling in begin
memory and cannot be used. Self.brand := brand;
Self.model := model;
Self.owner := owner;
Self.purchaseDate := purchase - Date;
Self.price := price;
end;

TERM 2 | CHAPTER 2 OBJECT-ORIENTED PROGRAMMING | UNIT 2.1 Defining a user-defined class

TERM AND DESCRIPTION CODE EXAMPLES

b. Accessor (or getters): type
. TPh = cl
e functions that return the state of the p??sa tec ass
attributes public
e can transform outputs before displaying | :
them | function getPrice : Double;
e jtallowsyouto store datainone way, | = .. .
but present it to the application in a end;
different, more useful way Implementation .
o make debugging easier, as you can Func;;o?nTPhone.getPHce : Double;
include breakpoints inside the accessors gResult ‘= price;
(getters) functions, allowing you to detect end: '
mistakes that occur at this point in the
program 7
e getPrice returns the value of price which
is stored as a Double or Real
c. Mutator (or setters): type
TPh = cl
e procedures that update the state of the one = ctass
object private
public
e caninclude input validaton, |
automatically rejecting any incorrect | procedure setPrice (price : Double/Real); |
values
e can transform inputs before storing them | end;
* allows you to build rules or conditions Implementation . .
into the storage of variables proczi;:s TPhone.setPrice (price : Double/Real);
° make debugglng eagle(, as you can Self.price := price:
include breakpoints inside the mutators end:
(setters) functions, allowing you to detect
mistakes that occur at this point in the
program
e setPrice uses the parameter for price to
set the value of the phone object’s
attribute
d. Auxiliary (or helper): type
. i, TPh =cl
e Provide additional procedures or p:?ja tec ass
functions that assist the accessors public

(getters) and mutators (setters) in their

work | function calculateAge : Integer;
e Enable you to reduce the complexity

within a class by providing an abstraction | end;

of a complex algorithm within a method | Lmplementation

o Some generate data that is used by fu\r;::mn TPhone.calculateAge : Integer;
other methods, often derived from the .)
)) numbDays : Integer;
essential data encapsulated in the class begin
e Use the data sent to them by a calling numDays := round(now - purchaseDate);
method and returning the generated result := numDays DIV 365;
data / end;

e Do not have the responsibility of
changing the state e.g. calculateAge in
the TPhone class used PurchaseDate, an
attribute to return age

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

TERM AND DESCRIPTION CODE EXAMPLES

e. ToString:

is used to display the state of the class,

TPhone = class

.) . private
that is, the values of its attributes —_| Brand . String.
when displaying more than the state of Model : String:
the class, e.g. calculated results, then Owner : String;
you should develop a function that PurchaseDate : TDateTime;
returns a string version (preferably) of Price : Double/Real;
the information you want to display. public
| function toString : String;
Implementation
T/ function TPhone.toString : String;
Var
output String;
begin
Output := 'Brand: ' + brand +
sLineBreak + ‘Model: ' + model +

sLineBreak +
'Owner: ' + owner + slLineBreak +
'purchaseDate: ' +
formatDateTime('dddddd', puchaseDate)
+ SLineBreak +
'"Price: ' + Format('%m',
Result := output;

end;

[pricel);

Did you know

e Generally, we let the method calling

calculateAge deal with the display of the age.
e Using many short methods reduces complexity.
e Each method should only have one task.

2y

Did you know

A method name followed by its parameters is called the method signature.

Overloading is declaring more than one method with the same name.
Overloading allows us to have multiple methods that share the same name, but
with a different number of parameters and types.

Example:
Public
Constructor create; overload;
Constructor create (brand, model, owner : String;
purchaseDate : TDateTime; price : Double/Real); overload;

TERM 2 | CHAPTER 2 OBJECT-ORIENTED PROGRAMMING | UNIT 2.1 Defining a user-defined class

UNIT

2.2 Using the class

Before other units in your application can use your class, they need to import the class unit. Having access
to the custom class allows the application to create objects of the imported class and call its public methods.

IMPORTING THE TPHONE CLASS

1. Open the main form of the application and add the unit name (PhoneClass) to the USES section at the top of the
code. This imports the TPhone class to your main form.

2. Inyour main form, declare a variable called phone of type, TPhone, that is, phone: TPhone.

3. Save and run your application. (O]]
If everything is correct, your application should open without any errors. CLASS METHODS IN
This means that you have successfully created a custom class and added it DELPHI

to your application.

To check if the PhoneClass interface is visible, double click on the [Save]
button and type the word ‘phone’ in the event handler.

phone.|

constructor create;
function getPrice: string;
[t: 9 Insert procedure setPrice(Price: Double); https://www.youtube.com/
function calculateAge: Integer; watch?v=TDTak5nsVD4
function toString: string;

[L

See how the interface we defined for our class pops up. Everything defined in the public section of the class
definition is visible. You will notice that we cannot see the attributes in the private section.

Now we can use the constructors to instantiate objects of type TPhone.
Make sure you use Delphi’s popup tip to pass the parameters through in the correct order. For example:

phone := TPhone.Create (|

<no parameters expected>
nd; <no parameters expected>
SYNTAX IMPLEMENTATION
ObjectName = Classname. phonel := TPhone.create;
name (optional parameters: phone2 := TPhone.create('Huawei',
datatypes); 'P10', 'John Smith',
StrtoDateTime('2017/7/21"),
750.00) ;

TESTING THE TPHONE CLASS

A quick test to see if the all the methods are implemented correctly and if the correct data is stored in the attributes
can be done as follows:

EXPLANATION IMPLEMENTATION

4. Add the code in right hand column to the onclick
event of button [Save] in the form class.

phone := TPhone.create;

showmessage (phone.toString) ;
The first line creates a TPhone object.

The second line displays its state.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

5. Now instantiate the phone object with the following
attributes:

Brand: Huawei

Money: P10

Owner: John Smith
Purchase Date: 2017/7/21
Price: R750.00

Replace code in the [Save] button with the code in
the right hand column.

Save and run the application.

phone := TPhone.create('Huawei',
'P10', 'John Smith',
StrtoDateTime('2017/7/21"),
750.00) ;

showmessage (phone.tostring) ;

Belimyphone X

Brand: Huawei

Model: P10

Owner: John Smith

Purchase Date: Friday, 21 July 2017
Price: R750.00

[ox]

In a similar way you can test all of the methods:

Add the code on the right hand column to the [Save]
button to test the setPrice, getPrice and calculateAge
methods.

%m uses the same system values as FormatCurr.
%d converts an integer to a string.

For more quick formatting with ShowMessagefmt(*%ad, f,
s, m’,(args}).

phone := TPhone.create('Huawei',
'P10', 'John Smith',
StrtoDateTime('2017/7/21"),
750.00) ;

showmessage (phone.tostring) ;
phone.setPrice(650.00);

ShowMessagefmt ('%m' , [phone.
getPricel);
ShowMessagefmt ('%d', [phone.

calculateAge];

Save and run your application.

TERM 2 | CHAPTER 2 OBJECT-ORIENTED PROGRAMMING | UNIT 2.2 Using the class

COMPLETING THE SELLMYPHONE APP
The SellMyPhone App. captures the input from the components, then instantiates a phone object, and finally displays
the brand, model, age and price as a record in the string grid. These inputs could come from various sources like a

text file, parallel arrays or a database.

Before we use the class add getters for the attribute Brand and Model. Replace the test code in the [Save] button
with the code below:

EXPLANATION IMPLEMENTATION

Implementation
Declare the phone globally under the VEF
implementation keyword. phone: TPhone:
Declare a global variable row to manage the Row: Integer = 1;
insertion point for the StringGrid. procedure TfrmTPhone.btnSaveClick(Sender:
TObject);
var
Brand, Model, Owner : String;
Declare local variable for inputs from the PurchaseDate : tDateTime:
various Components. Price : Double;
begin
Brand := cbxBrand.Items[cbxBrand.
ItemIndex];
Model := edtModel.Text;
Owner := edtOwner.Text;
Read and store the inputs. PurchaseDate := StrToDate(edtDate.Text);

Price := StrToFloat(edtPrice.Text);

phone := TPhone.Create(Brand, Model,
Owner, PurchaseDate, Price);

sgrPhones.Cells[0,row] := phone.getBrand
+ ' ' + phone.getModel;
sgrPhones.Cells[1, row] Format ('%d
years', [phone.calculateAgel);

Instantiate the phone object calling the
parameterised constructor and the input
values provide by the user.

sgrPhones.Cells[2,row] := Format('%m',
Call various TPhone class methods to provide , [phone.getPrice]) ;
information about the phone object. row := row + 1.
end;

Save and run your application.

You could use a TListto store a list of phone objects. This will ensure that all the phone objects will be available while
the program is running. If you want a more permanent copy of the list then send the data to a file or store it in a
database.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

PROGRAM INTERACTION WITH THE CLASS

UNIT - CLASS MAIN FORM

PhoneClass;
interface
uses sysUtils, dateUtils;
type
Tphone = class
private
brand, model, owner string;
purchaseDate: TDateTime;
price: Double;
public

constructor create(brand: string;
model: string; owner: string;
purchaseDate: TDateTime;

price: Double); overload;

function getPrice: Double;

procedure setPrice(price: Double);

function calculateAge: Integer;
function toString: string;
end;
implementation
{ Tphone }
function|Tphone.calculateAge:| Integer;
var
NumDays: Integer;
begin
NumDays := round(now - purch@seDate);
Result := NumDays DIV 365;
end;

constructor|Tphone.create

owner: string; purchaseDate: TDateTipe;
price: Double);
begin
Self.brand := brand;
Self.model := model;
Self.owner := owner;

Self.purchaseDate := purchaseDate;
Self.price := price;
end;

function Tphone.getPrice:[Double;
begin
Result
end;
procedure Tphone.setPrice(price: Do
begin
Self.price
end;
function Tphone.toString: string;

:= price;

:= price;

unit frmSellMyPhone;
interface
uses

Windows, Messages, SysUtils, Variants,
Classes, Graphics, Controls, Forms,
Dialogs, Grids, ExtCtrls, StdCtrls,

PhoneClass;

type

TForml = class(TForm)

procedure btnSaveClick(Sender:
TObject);
procedure FormShow(Sender: TObject);
private
{ Private declarations }

public
{ Public declarations }
end;
var
Forml: TForml;
implementation
var
phone: TPhone;
row: Integer = 1;
rocedure TForml.btnSaveClick(Sender:
TObject) ;
ar
Brand, Model, Owner: String;
PurchaseDate: tDateTime;
Price: Double;
begin
// inputs
Brand := cbxBrand.Items[cbxBrand.
ItemIndex];
Model := edtModel.Text;
Owner := edtOwner.Text;

PurchaseDate := StrToDate(edtDate.
:= StrToFloat(edtPrice.Text);
antiate the phone

phone :=|TPhone.Create(Brand, Model,
Owner, PurchaseDate, Price);

// call the object methods
and\insert the information in the

strilgGrid
sgrPhones.Cells[0, row] := Brand + '
odel ;
rehones.Cells[1, row] := Format('%d
years', {Phone.calculateAge]b;
sgrPhones.Cells[2, row] :=

Format('%m‘,l[phone.getPrice]b;

row := row + 1;
showmessage (phone.toString);
end;

TERM 2 | CHAPTER 2 OBJECT-ORIENTED PROGRAMMING | UNIT 2.2 Using the class

PROGRAM INTERACTION WITH THE CLASS

UNIT - CLASS

begin
Result := 'Brand: ' + brand +
sLineBreak + 'Model: ' + model +
sLineBreak + 'Owner: ' + owner +
sLineBreak + 'Purchase Date: ' +
formatdatetime ('dddddd', purchaseDate)
+ sLineBreak + 'Price: ' + Format
('R%f', [pricel);

end;

end.

MAIN FORM

// given code

procedure TForml.FormShow(Sender:

TObject);
begin
sgrPhones.Cells[0, 0]
sgrPhones.Cells[1, 0]
sgrPhones.Cells[2, 0]
end;
end.

'Cell Phone';
"Age’';
'Price’;

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

‘ Activity 2.4 Pen and Paper

2.4.1 Write down the syntax for instantiating a class.

2.4.2 Given is the constructor declaration for a TNGO class:

Constructor create(Name: string; Funds : Double: Donations : Integer; Code: String); For (a) to (g) below,
state whether an accessible NGO object will be created. If not, then state why.

a. NGO.create(*Helping Hand’, 23500.00, 50, ‘HHOO7");

b. NGO := TNGO.create(*Helping Hand’, ‘HHO07’, 23500.00, 50);

c. NGO := TNGO.create(‘Helping Hand’, 23500.00, 50, ‘HH007"); Did you know

d. TNGO := NGO.create(‘Helping Hand’, 23500.00, 50, ‘HH007"); Non-governmental

e. NGO := TNGO.create('Helping Hand’, 23500.00, 50); organisations, or NGO were

. TNGO.create(Helping Hand', 23500.00, 50, ‘HH0O07"); frst called such in Artce

' create(Helping Hand, T) 71 in the Charter of newly

g. NGO :=TNGO.create(*Helping Hand’, 23500.00, 50.00, ‘HH007"); formed United Nations in
2.4.3 Give a Delphi statement to import the class, NGOClass into the form unit. 1945. While NGOs have no

2.4.4 How will you ensure that the value of an attribute cannot change after the
object is created?

2.4.5 What is the function of the toString-method?
2.4.6 What criteria will you use to decide if a method belong to the class or not? governmental influence
2.4.7 Which one of the following is the correct syntax for the signature(header) of

fixed or formal definition,
they are generally defined
as non-profit entities
independent of

a get-method? Also state why the others are incorrect.

a.
b.
c.
d.

& Activity25

Procedure methodName(parameter: datatype);
Function methodName(parameter: datatype): dataType;
Procedure methodName: dataType;

Function methodName: dataType;

2.5.1 Open the project saved in the 02 — carPriceList folder. Provide code to:

a. Import the CarClass unit in the frmCar unit.
b. Declare the global variables Car of type TCar and an Integer variable Row initialised to 1, in the
implementation section. Remember the var keyword.
c. Inthe [Save] button’s onclick event handler, provide code to:
i. Store the inputs brand, model, year and retail price.
ii. Create the Car object Did you know
iii. Call the methods getDetailedModel and getVATPrice to display the Wh . | |
model details and the retail price in the string grid. enusingac ass,l diways
. . . _ check for for potential
2.5.2 Open the project saved in the 02 — myPlaylist folder. Provide code to: helper methods. Any
a. Import the SongClass unit in the frmSong unit. statement or function that
h. Declare a global variable mySong of type TSong and an Integer variable will be usgd more than
Row initialised to 1, in implementation section. Remember the var once and is only related to
keyword. the class data should be
c. Inthe [AddtoPlaylist] button’s onclick event handler, provide code to: moved t(.) a.prlvate helper
method inside the class.
i. Store the inputs Artist, Album, Song, TrackNumber and duration.

ii. Create the mySong object.

iii. Call the methods getQuickReference and getMinuteDuration to display the quick reference and the
minute duration in the string grid.

TERM 2 | CHAPTER 2 OBJECT-ORIENTED PROGRAMMING | UNIT 2.2 Using the class

‘ Activity 2.5 continued

CHALLENGE

2.5.3 The mathematics teacher at school Overcrowded High is requesting your help. The teacher wants an application
that will generate quadratic equations in the following categories:

those that have rational roots

those that have irrational roots.

He also wants only those equations for which coefficients a, b and ¢ are non-zero.

The equations and their roots must be sent to a file. The teacher wants to print the file and give each of the
60 learners a unique set of three problems to solve.

Open the project HelpMathTeacher in the folder quadraticEquations. The code for the buttons [Save] and

[Shuffle List] has been provided.

You are required to import the QuadraticClass and declare a variable of type TQuadratic.

In the Make list event-handler, the code to generate permutations of the coefficients a, b and ¢ is given as
three nested loops. Insert code in the nested loop to do the following:

a. Test for non-zero coefficients.
b. Create a Quadratic object.

c. Check which problem type is selected.

d. Testif the current object meets the selected problem type.
Build a line with the quadratic equation and its roots.

Add this line to the list box.

In b to d above, use the methods of the Quadratic class you imported.

@ Help the mathematics teacher

Quadratic equations:
problem and answer generator x

= o W

—b + Vb¢ — 4ac
2a

Select problem types | Make kst I',q,:.;},,q.o

A 2-15¢ +4a 0
@) Rational roots Axi13-3= 0

Shuffielst | |y yixe3e0
A3 Y0x4= 0
ax39x-2= 0
O iratonal roots - 1o ot
Seve |4 t-fx-3m 0

xlm-400:x2=0.25
¥le-400:%2=0.25
]l =.300: %2 =-0.25
X1 =-3.00 i x2 = 0.25
%1 =-2.00:x2 =0.50
¥1m-200:x2=0.25
¥l m-100 ;%2 =100
_ xlm-1.50:x2 = 0.5

-

2.5.4 The Maths Literature teacher has asked you to develop an application to help the learners check their
homework based on cones. The App. is required to calculate three values for a cone:
slant height, surface area and volume given the height and diameter of the base.

The following buttons have been provided in the Project file inside the 02 — Cone Calculation:
In the form class add code to import the class.

a.
b.

Button [Create New Cone]:
demonstrates the parameterised
constructor. Use two (2) input boxes
to get the parameters required to
instantiate the object, create the
object and use the toString method
to display the state of the Cone
object in the memo. Code to enable
the other buttons is given.

Button [Slant Height]: using the cone
created in b, display the slant height
in the memo.

Button [Volume]: using the cone
created in b, display the volume in
the memo.

Create New Cone

@ Form1 - e} ®
Cone Calculations
/ \\ Ao The Formula
s §=slant height 1
/ n \ Volume = 3™ r*h
i New Cone object created:
Heght: 10.50
Diameter of Dase: 8.60
e Slenl height = 1134837
— - Snflurmraw 71194437
Surface Arca

Volume = 20330817

e. Button [Surface Area]: using the cone created in b, display the surface area in the memo.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

One of the reasons custom classes are so powerful is that they allow you to keep lists of objects, with all
the data related to each object stored in the object itself. This is a lot more reliable than creating multiple
parallel lists, as inconsistencies can easily appear in parallel lists (for example, if an item is deleted from

one list but not from the others).

Our SellMyPhone App. only uses one object at a time and reuses the
object variable for each instatiation. Once a second phone is created you
can’t go back to the first object to change the price of the phone. You will
have to create another phone object for the same cell phone and new
price. This shortcoming motivates the use of a list to store objects so that
we can use them in a meaningful way.

Did you know

You will not be examined on
your ability to create arrays
(or lists) of objects.
However, when creating
your own applications,
custom objects will often be
used with arrays and lists.

LB RDRYL P IINAS Chapter 2: Object-oriented programming

QUESTION 1
1.1 Explain the concept of encapsulation in object-orientated programming.
1.2 What is the purpose of a constructor in object-orientated programming?
1.3 Explain why you would use a getter without setters.
1.4 The following class diagram has been suggested as part of the transport program to manage their drivers:
ATTRIBUTES METHODS
- driverID : String + getDriverID() : String
- surname : String + getSurname() : String
- firstName : String + getFullTime() : Boolean
- cellNumber : String + setFirstName(firstName : String)
- fullTime : Boolean + toString() : String
+ calculateAge() : Integer
. The minus sign (-) shows that the declaration is private while the plus sign (+) shows that the
declaration is public. Explain the difference between a public declaration of attributes and a private
declaration of attributes and methods.
0. Write down an example of an auxiliary method from the Driver class.
1.5 Define object-orientated programming.

TERM 2 | CHAPTER 2 OBJECT-ORIENTED PROGRAMMING | UNIT 2.2 Using the class

O\ BRI\ WAR IINSS Chapter 2: Object-oriented programming

QUESTION 2

‘ For this application, open the project saved in the 02 — Question 2. Once done, save your project in the same folder.

Tourists visiting South Africa often travel to different areas of the country. Normally, guests to a bed and breakfast
(B&B) have to pay the bill for all the extra items they ordered during their stay when they check out. To provide a
service that makes them more appealing than other B&Bs, the Petersen Group has decided to let their guests
transfer their accumulated extra costs between the guesthouses in each town. Guests will have to pay the bill for
these items when they check out at the last guesthouse on their journey. They decided that the best way to manage
this is to e-mail a text file indicating the extra costs of the guests to the next guesthouse.

You have been asked to write the program to handle the extra costs of the guests. The data is stored in a text file
named “Extras.txt” in the following format: GuestNo#GuestName#ExtraType#CostPerltem
An example of some of the data in the text file:
1#Mr G Ferreira#Phone#7.05
2#Mrs L Honeywell#Drinks#71.95
3#Ms | Mendes#Kitchen#39.95
1#Mr G Ferreira#Kitchen#23.95
1#Mr G Ferreira#Drinks#7.15
4#Mr B Khoza#Taxi#127.25
2.1 Define a class named TExtraltem. Create appropriately named and typed private fields to hold the following
data (suggested field names are given in brackets):

e guest number (guestNum)
e item type description (itemType)
© cost per item (cost)

2.2 Write a constructor method that accepts the guest number, the item description and the cost per item as
parameters. All the fields must be initialised in the constructor.

2.3 Write an appropriately named get method (accessor method) to return the guest number.

2.4 The company uses a 25% markup on cost per item to determine profit. Write a method named
calculateProfit that calculates and returns the profit (that is, cost*25/100).

2.5 Write a method named calculatePrice that calculates the final price of the item (that is, cost + the
calculated profit).

2.6 Write a method named toString that builds and returns a string with information on the item formatted
as follows:

ltem type<tab>Cost<tab>Profit<tab>Final Price
Any numbers must be formatted to two decimal places.

2.7 Create an array named arritems that holds TExtraltem objects. Write code in the OnActivate event handler of
the form to read information from the text file Extras.txt according to the following steps:

a. Testif the text file exists. Display a suitable message if the file does not exist and terminate the program.
b. Use a loop to:

e read a line of text from the text file.
e separate the text into the guest number, item type and cost.
e use this information to create a new TExtraltem object and place the object in the array
named arrltmes.
c. Use a counter field to keep track of how many items there are in the array.

2.8 When the user clicks the [List ltems] button, the program must do the following:
a. Allow the user to enter a guest number.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

[\ B Ry P I\INAS Chapter 2: Object-oriented programming continued

b. Search through the array. Each time an item for the guest is found:

o calculate the profit using the percentage mark-up and calculate the final price.
o (display the information using the toString method.
© add the final price for each item to get a grand total.

c. When the search is complete the program must:

o (display the total amount due for the guest.

e (display an appropriate message to say that there are no extra charges for this guest, if no items
have been found.

An example of the final output is shown below:

Information on extra items for guest number 1

Item Cost Prafit Price
Phone R7.05 R1.76 R&.81
Kitchen R23.95 R5.99 FA29.94
Drinks R7.15 R1.79 R854

The tatal amount due is R47.69

QUESTION 3

‘ For this application, open the project saved in the 02 — Question 3. Once done, save your project in the same folder.

A constellation is a group of related stars that covers the night sky. Some stars are considered to be navigational,
while others are passive. A navigational star is used to assist with calculating direction and movement.

The application you will be using has the following user interface.

3.1

3.2
3.3

@ Stars — O X
STARS

Select a star:

| el

I Instantiate Object | Dispy || visbiity

Write code for a constructor method that will receive the name of the star, its magnitude, its distance from
the Earth and the constellation it belongs to as parameters. Set the FOUR respective attributes to the
received parameter values and initialise the fNavigationalStatus attribute to FALSE.

Write code to create an accessor method for the constellation attribute fConstellation.

Write code for a mutator method called setNavigationalStatus, which will receive a Boolean value as a
parameter and set the navigational status attribute to the received value.

TERM 2 | CHAPTER 2 OBJECT-ORIENTED PROGRAMMING | UNIT 2.2 Using the class

O\ B0 R0\ WA e IVINES Chapter 2: Object-oriented programming continued

3.4

3.5

3.6

3.7

3.8

Write code for a method called determineVisibility that will determine and return a description of the
visibility of the star. The visibility of a star depends on its distance from Earth in light years and its magnitude.

Use the following criteria to determine the description of visibility that applies to a star:

DISTANCE MAGNITUDE DESCRIPTION OF VISIBILITY

Fewer than 80 light years Any value Clearly visible

Between 80 and 900 light Upto2 Hardly visible to the naked eye

years (inclusive) Larger than 2 Visible by means of standard
optical aid

More than 900 light years Any value Only visible by means of

specialised optical aid

Write code to create a toString method which returns a string formatted as follows:

e <name of star> belongs to the <constellation> constellation.
e The star has a magnitude of <magnitude> and is <distance from Earth> light years away from Earth.

If the star is a navigational star, add the following line:
e <name of star> is a navigational star.

Otherwise, add the line:

e <name of star> is a passive star.

For the [Instantiate Object] button, the user is required to select the name of a star in the combo box. Once
done, write code to do the following:

a. Extract the name of the selected star from the combo box.

b. Use a conditional loop and search in the text file for the name of the selected star. The loop must stop
when the name of the star has been found in the file.

o

If the name of the star has been found, do the following:

e |Instantiate a 7Star object using the objStarX object variable that has been declared globally as part
of the given code.

o Test whether the star is a navigational star using the aNavigationStars array and set the value for the
navigational status attribute accordingly.

If the name of the star has NOT been found in the text file, display a message to indicate that the star

was not found.

=

When the [Display] button is clicked:
a. Display the details of the star in the rich edit component readDescription using the toString method.

b. Load the image of the constellation that the star belongs to into the imgStar component. The file name
of the image to be displayed is the name of the constellation the star belongs to. All image files have the
extension “.jpg”.

The brightness and visibility of a star is dependent on the magnitude and the distance of the star from Earth.
When the [Visibility] button is clicked, call the relevant methods to display the name and visibility of the star
as a Message Box.

For example, if Mimosa is selected and the [Visibility] button is clicked, you should see the following
message.

e Star: Mimosa
Visibility: Hardly visible to the naked eye

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

CHAPTER

TWO-DIMENSIONAL ARRAYS 3

CHAPTER UNITS
Unit 3.1 2D arrays
Unit 3.2 2D arrays with data

Unit 3.3 Application for 2D arrays

Learning outcomes

At the end of this chapter you should be able to O]]

o describe the concept of 2D arrays

o define the structure of 2D arrays 2D ARRAYS

© input data to 2D arrays using different sources

o use the data from 2D arrays

o output the data from 2D arrays using column and row headings.
INTRODUCTION
| , - L , https://www.youtube.com/
magine that you are writing a chess application. One of the main tasks of your watch?v=ICepY3IuREc

application would be to record the position of the pieces after every move. To do
this, your application would need to analyse each square of the chessboard after
a move and record whether it contains a piece or not. How would you do this?

Figure 3.1: A chessboard contains eight rows and eight columns

TERM 2 | CHAPTER 3 TWO-DIMENSIONAL ARRAYS

You could create 64 individual variables with each variable storing the name of
the piece on it. However, with 64 variables, you would need to access each
variable individually since you cannot use a loop to iterate through them.
Furthermore, the computer would not understand the relationship between these
squares (that is, that one square is above another one), making it very difficult to
use in the rules of your game.

A better solution would be to create eight array variables, with each array
containing the squares from one row. This would have the benefit of your program
understanding how all the squares in the rows are related. However, you would
still need to individually access the eight arrays, and your computer will still not
understand the relationship between the different arrays.

In fact, the best way to handle this data is to create a single two-dimensional (or

2D) array. A 2D array uses two indices: one for the row and one for the column.

This has a number of very significant advantages:

* You can store the data (elements) using a single variable.

® You can scroll through the elements using a nested FOR-loop.

* The relationship between the elements (that is, which squares are next to
which) is captured in the indices, making it possible to use these
relationships in your code.

In this chapter, you will learn more about 2D arrays and how they can be used in
programming.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

UNIT

3.1 2D arrays

Since Grade 11, all your examples of arrays have been of one-dimensional arrays. A one-dimensional
array stores an i-number of elements, of a specific type. These elements can be accessed using an index
(usually “i"). For example, if you created an array to store the first five powers of three, the values could be
represented using a single row with five elements.

aNumbersi] 3 9 27 81 243

The third element in this array can be accessed using the array name and the index of the element in
square brackets.

Accessing an element in a 1D array
iValue := aNumbers[3];

In contrast, 2D arrays store two-dimensional data which is represented using a grid with rows and columns.
Each element in the 2D array has two indices (usually I and J), with the first index giving the row number
and the second index giving the column number.

If you look at the 2D grid below, you will see that it is made up of five rows and three columns. The
value of the first index indicates the number of the row. This means that aNumbers[1, J] (where value
of the first index is 1) refers to the elements in the first row, while aNumbers[2, J] refers to the second
row of elements. In contrast, the numbers in the second index indicates the column number. For
example, aNumbers[I, 3] refers to the elements in the third column of the array.

The table below shows a visual representation of a 2D array.

aNumbersl,1] aNumbers][i,2] aNumbers[i,3]
aNumbers|[1,j] 1 1 1
aNumbers|[2,] 2 4 8
aNumbers|[3,]] 3 9 27
aNumbers[4,] 4 16 64
aNumbers|[5,]] 5 25 125

The numbers in the array were created by raising the index I (the row number) to the power of J (the
column number).

The table effectively shows how 15 integer values can be represented uniquely using the same identifier,
aNumbers, and the two indices surrounded by square brackets to distinguish between them. It shows 15
unique integer variables that can be accessed or be assigned new values. Variables must be declared
before they can be used. How is the 2D array declared?

TERM 2 | CHAPTER 3 TWO-DIMENSIONAL ARRAYS | UNIT 3.1 2D arrays

DECLARING A 2D ARRAY

To declare a 2D array, you can use the following syntax:

SYNTAX EXAMPLE
2D array syntax var
var aNumbers: Array[l..5,1..3]
aName: Array[l..i, 1..j] of Integer;
of Type;

Where I gives the number of rows in the array and J gives the number of columns. As can be seen from
this declaration, 2D arrays have the same general limitations as 1D arrays, namely:

o all the elements of the array must have the same type

* the array has a fixed size.

‘ Activity 3.1 Declaring 2D arrays

Using a pen and paper, declare the following arrays.

3.1.1 10 rows and 10 columns of integers.

3.1.2° 5rows and 4 columns of strings.

3.1.3 500 rows and 3 columns of reals.

3.1.4 250 rows and 400 columns of strings.

3.1.5 anarray to model weeks and days in the month of May

Have you noticed that the 2D array models displays things in a similar manner to a spreadsheet using only
one data type? That data type can be any of the built-in datatypes as well as those you declare.

ACCESSING ELEMENTS IN A 2D ARRAY

To access a specific element in a 2D array, you need to give both the row and column number.

m Accessing and using an element in a 2D array

Use the aNumber array above to reference the numbers given in the examples below.

EXAMPLE CODE

Assign 9 to iValue.

iValue := aNumbers[3,2];

Display the number 27. showMessage (IntToStr (aNumbers[3, 31)

Determine the square root of 64. Sqrt (aNumber [4,3])

0,
Increase the cost by S%. cost := cost + (aNumber[5,1] * 0.05)

When working with 2D arrays, it is important to remember that the first index indicates the row number
while the second index indicates the column number.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

ASSIGNING VALUES TO 2D ARRAYS

Once declared, you can assign values to, and read values from the array by providing the column and
row index.

m Assigning values to and array element

EXAMPLE

Assign the value 92 to row 3 column 3
of aNumbers.

CODE

aNumbers|[3, 3]

I
o
N

Given 1 <=a<=5.

Assign the user input from edtNumber to
Row a and column 1.

aNumbers[a, 1] StrToInt (edtNumber.Text);

Given 1 <=b <= 3.

Assign the value of the spin edit to row 2
and column b.

aNumbers[2,b] sedNumber.Value;

Given1<=a<=b5and1<=b<=3

Assign the value of 10 DIV 3 to row a
column b.

aNumbers[a,b] 10 DIV 3;

The activity below shows how this can be used in a real-life example.

‘ Activity 3.2 Chess and 2D arrays

Look at the chessboard below. As you learned in the introduction of this chapter, the position of pieces on a chessboard
can be represented using a 2D array with 8 rows and 8 columns.

TERM 2 | CHAPTER 3 TWO-DIMENSIONAL ARRAYS | UNIT 3.1 2D arrays

‘ Activity 3.2 Chess and 2D arrays continued

Based on this position, complete the following tasks.

3.2.1 Declare an array of strings called aBoard, to represent the 8 x 8 squares on the chess board.

3.2.2 Assign the position of all the pieces to the correct element in array aBoard. Make sure to use different strings for
white and black pieces or access elements with the same pieces.

3.2.3 Atthe top right of the board, there are two yellow squares. These squares show that the white king moved from
the first column to the second column in the previous move. How would you code this move using your array?

The names of the pieces are given in the table below:

NAME WHITE PIECE NAME BLACK PIECE
w_King ; b_King
w_Bishop b_Bishop
w_Pawn ? b_Pawn '

Since the data is saved in an array, you can use the information as part of your program. For example, you can
easily count which colour has the most pieces by stepping through your array and counting the first letters
stored for each square (“w” for white or “b” for black).

USING LOOPS TO STEP THROUGH AN ARRAY

While assigning values one-by-one can be useful (as in the chess example), it is more commmon to use
FOR-DO loops to assign values to an array. The nested FOR-DO loop is the perfect control structure to
scroll through a 2D array. The indices must stay within the declared boundaries or an out of bound error
will occur.

Use the length function to ensure that the indices remain within the boundaries.

var
aNumbers : Array [1..7,1..5,1..8] of Integer;

begin
showMessage (IntToStr (Length (aNumbers))); //output 7
showMessage (IntToStr (Length(aNumbers[1]))); //output 5
showMessage (IntToStr (Length(aNumbers[1,1]))); //output 8

end;

Note how without any indices Length returns the first upper boundary when the lower boundary is 1.
By fixing the first index, any number from 1 to 7 will work, giving the upper boundary of the second index,
and so on. If a fourth index [,1..12] was given, how will the length expression change to return its upper
boundary, 127

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

m Nested-FOR-DO loop

. Use a nested FOR-DO loop to assign the sum of the row and column numbers to each element of array
aNumbers.

var
aNumbers : Array[l..3, 1..2] of Integer;
i, j: Integer;

begin

1: for i := 1 to length(aNumbers) do

2: for j := 1 to length(aNumbers[1l]) do
BE: aNumbers[i, j1 := i + j;

end;

The code will produce the following 2D array:

2 3
3 4
4 5

Visual representation of the array

To see how values are assigned to the array in this FOR-DO loop, you can use a trace table. By stepping through
the code bit-by-bit, it becomes easier to see how each element of the array is assigned a value.

For the code snippet above, add more rows to the trace table below and complete tracing through the nested
FOR-loop. Track the values of the following variables:

1.

2. |

3. Name of array element (including indices)
4. Value of the array element.

aNumbers aNumbersi,j]

Line number i
name value

3 aNumbers[1,1] 2

. Use the same nested loop pattern to extract/access data from the 2D array.

In this example we have two options:

o build a line of output and then when complete add it to the Memo. Note the line is set to null after adding to
the Memo.

* build a single line which include line breaks then add.

TERM 2 | CHAPTER 3 TWO-DIMENSIONAL ARRAYS | UNIT 3.1 2D arrays

m Nested-FOR-DO loop continued

for i := 1 to length(aNumbers) do
begin
for j := 1 to length(aNumbers[1l]) do
line := 1line + format('%d ", [aNumbers[i, j11)
Memol.lines.add(line) ;
line := '";
end;
//alternative
for i := 1 to length(aNumbers) do
begin
for j := 1 to length(aNumbers[1]) do
line := 1line + format('%d ', [aNumbers[i, jl11) ;
line := line + slLineBreak;
end;

Memol.lines.add(line) ;

& Fom1t —] X

—hawmn
bW

]

P8 0 Nested-FOR-DO loop

Now that you have seen how 2D arrays can be manipulated with nested FOR-DO loops, create the following 2D arrays
using pen and paper (include the variable declarations):

3.3.1 Anarray containing the multiplication table for the first six numbers.

3.3.2 Anarray containing the powers table for the first ten numbers and three exponents. You can use the Power
function to do this.
3.3.3 A10hby 10 2D array of numbers
o Fill the array with random numbers in the range 100 to 999.
o Extract the numbers from the 2D array and in a memo component display as a 10 by 10 table.
o Insert an empty line and display the leading diagonal on the next line in the memo.

USES OF 2D ARRAYS

Up to now, you have looked at very specific uses of 2D arrays, but these arrays are incredibly useful in a
number of different situations. Two of the most common general uses are when you need to store a few
pieces of information about every item in a list, and when you need to store a grid of information. Here are
some examples:

* An application’s usernames and passwords can be read using a 2D array.

* The results of two tests and an exam for 500 students can be stored in a 500 by 3 array.

* Alist of companies’ incomes, expenses and balances can be store in a 2D array.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

* The multiplication table is a grid that can be stored in a 2D array.

* The pixels of an image can be represented as a grid using a 2D array.

* The numbers on a sudoku puzzle can be stored in a 9 by 9 array.

® The 4 suits of cards containing 13 cards each can be stored in a 13 by 4 array.
® Various board games where the board has a grid like structure.

From the examples you will see that a 2D array is suitable for modelling, or storing, most data in a table
form. A 2D array can also be used to store the data of a CSV file — as long as all of the elements have a
common type.

5 3 7 Student Testl Test2 Exam
6 1195 200001 87 76 69
200002 64 68 53

9 8 6 200003 95 56 99

8 6 3 200006 92 59 65
4 8 3 1 200005 51 65 84
7) 6 200006 57 52 S5
200007 56 61 42

6 2|8 200008 40 46 61
4|1/9 5 200009 90 55 82

8 7|9 200010 50 42 82

Figure 3.2: Tables and grids of information can be represented with 2D arrays

& Activity 3.4

Open the application saved in 03 — Array Questions. You should see the following user interface.

@ Array Questions - o x

Create the following 2D arrays and display their values in the /stAnswer component. Make use of the tab space
character (#09) to display the values from the columns separately.

3.4.1 The 6 by 6 multiplication table.

3.4.2 A9 by 9 table containing a random value between 1 and 9 for each element.
3.4.3 A 10 by 5 table containing the sum of the indices.

3.4.4 A7 by 5 table of randomly generated lowercase characters.

Did you know

The listbox component has a TabWidth property
which determines how much space is used by the
tab space character. This property has a default
value of O which means tab space characters are
not shown, unless you change the property.

For the rest of this chapter, you will be creating applications that work with 2D arrays.

TERM 2 | CHAPTER 3 TWO-DIMENSIONAL ARRAYS | UNIT 3.1 2D arrays

UNIT

3.2 2D arrays with data

In the previous unit, the data for the arrays were either entered manually (as in the chess example) or
generated automatically using numbers. An additional method can be used to add data to arrays which
is to read the data from a text file or database. To see how this can be done, you will use the following
dataset (saved in the marks.csv text file), which contains information about five students at your school.

STUDENT NUMBER ~ AGE FEES OUTSTANDING ~ TEST1 TEST2 ASSIGNMENT EXAM

200001 16 1500 75 72 97 81
200002 17 200 88 94 81 92
200003 17 350 85 53 76 84
200004 19 2300 64 59 63 52
200005 16 4000 62 74 82 4

However, before you can start working with the data you first need to add it to a 2D array.

St Adding data to an array

Open the project saved in your 03 — School Marks folder. You should see the following user interface.

@ School Marks - O X
Results

G E] G A E]E] F]] [[[« =] (3] [#] [E]

In the following example testing for the existence of the file left out to keep the code simple.

The code for the CSVIntoArray procedure is given below:

Procedure code
procedure CSVIntoArray;
var
sData : String;
iComma, i, j : Integer;
fCSV : TextFile;
// abData : Array[l..5, 1..7] of Integer; (already declared globally)
begin
AssignFile(fCSV, 'marks.csv');
Reset (fCSV) ;
ReadLn (fCSV, sData);
for i := 1 to 5 do

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

Example 3.4 Adding data to an array continued

begin
ReadLn (fCSV, sData);
for j := 1 to 7 do

begin
iComma := Pos(',',6 sData);
if iComma := > 0 then
begin

aData[i, j]l := StrToInt(Copy(sData, 1, iComma-1));
Delete(sData, 1, iComma) ;
end
else
aData[i, jl := StrToInt(Copy(sData, 1, Length(sData)));
end;
end
end;

& Activity35

Based on the code in the example 3.4 above, answer the following questions:

3.5.1 What is the purpose of this procedure?
3.5.2 Describe the purpose of the following lines:
a. for i := 1 to Length(abData) do
b. ReadLn(fCSV, sData);
c. for j := 1 to Length(aData[l]) do
d. iComma := AnsiPos(‘,’, sData);
e. abatal[i, jl := StrTolnt(Copy(sData, 1, iComma - 1));
f. Delete(sData, 1, iComma);
3.5.3 When will the value of iComma be equal to 0?
3.5.4 Why is there a ReadLn function before the loop starts?
3.5.5 Inthe TStringlist version, describe the purpose of the following lines:
a. inList := TStringlList.Create;
b. inList.DelimitedText := sData;
c. abatal[i,j] := strtoint(inList.Strings[j-11);
3.5.6 Why does inList.Strings[j-1] have j-1 as the index?

3.5.7 Create an event for the [Read CSV] button that displays the data from the array in the list box. Make sure to run
the CSVIntoArray procedure at the start of this event.

WORKING WITH ROWS OF DATA

In your 2D array above, each row contains information about a single entity (in this case, a student). This
is typical when you read data from a CSV file or a database into an array. In contrast, each column
contains information about a specific field. For example, the first column contains all the student numbers,
while the second column contains the students’ ages.

When you want to work with the data of a row, you can keep the row number (or first index) constant while
using a FOR-DO loop to update the values of the second index.

TERM 2 | CHAPTER 3 TWO-DIMENSIONAL ARRAYS | UNIT 3.2 2D arrays with data

m Find the largest mark in the first row

Stepping through a row
ilargest := 0;
for j := 4 to Length(abata) do
begin
if aData[l, jl > ilLargest then
ilargest := aData[l, jIl;
end;

In this snippet, a FOR-DO loop was created that repeats once for each column
of the array. The FOR-DO loop’s counter I is then used to iterate through each
element of the first row of aData in order to find the largest value.

To see how this technique can be applied to your school’s dataset, complete the
following activity.

‘ Activity 3.6 Stepping through a row

Using the 2D array created for School Marks, create events for the [1] and [2] buttons to
calculate and display the following:

3.6.1 The 3rd student’s average mark for his tests, assignment and exam.
3.6.2 The 2nd student’s highest mark.

WORKING WITH COLUMNS OF DATA

As the previous case study shows, stepping through the values of a single row is
useful when you want to make comparisons or do calculations for a specific item
in your array. However, when you want to do calculations or make comparisons
using all the values of a single field, you need to step through a column.

To step through a column, you keep the second index constant while using a
FOR-DO loop to update the values of the first index.

Example 3.6 Determine the age of the oldest student

Stepping through the first column
iAge := 0;
for i := 1 to length(aData) do
begin
if aData[i, 2] > iAge then
iAge := aDatal[i, 2];
end;

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

Take note, the FOR-DO loop counter was changed to I. This is because the letter
I is used for the first index of a 2D array. Inside the FOR-DO loop, the second
index (column number) of the array is now held constant while the first index (row
number) changes as the loop repeats.

To use this in an application, complete the following activity.

‘ Activity 3.7 Stepping through a column

Using the 2D array created for School Marks, create events for the [3] and [4] buttons to
calculate and display the following:

3.7.1 The total fees outstanding.
3.7.2 The average age of students.
Once complete, save the project in the 03 — School Marks folder.

STEPPING THROUGH ALL THE DATA

The final way to step through the data is to use a nested FOR-DO loop statement.
With a nested FOR-DO loop statement, the outside loop can be used to
systematically select each of the rows or columns. The inside FOR-DO loop can
be used to step through the values of the selected columns or rows. By combining
two FOR-DO loops, you can therefore step through all the data in a table.

Example 3.7 Determines the number of A’'s scored by the class

Stepping through all the data
iCount := 0;
for i := 1 to Length(aData) do
for j := 4 to length(abData[l]) do
if aData[i, j] > 80 then
Inc(icount);
1stResults.Items.Add(IntToStr (iCount));

With this information in mind, complete the following activity.

‘ Activity 3.8 Stepping through all the data

Using the 2D array created for School Marks, create events for the [5] and [6] buttons to
calculate and display the following:

3.8.1 The highest single mark between the tests, assignment and exams.
3.6.2 The average of all the marks.
Once complete, save the project in the School Marks folder.

TERM 2 | CHAPTER 3 TWO-DIMENSIONAL ARRAYS

UNIT 3.2 2D arrays with data

& Activity39

Using the 2D array created for School Marks, create events for the [7] to [15] buttons to
calculate and display the following:

3.9.1

3.9.2
3.9.3
394
3.9.5
3.9.6
3.9.7
3.9.8
3.9.9

The 5th student’s lowest mark.

If the 4th student obtained their personal highest mark for the assignment.

If the 2nd student’s average is above 90.

The age of the oldest student.

The student number of the student who obtained the highest mark for the exam.
The student number with the highest outstanding fees.

The student with the highest average mark.

The lowest overall mark between all tests, exams and assignments.

The lowest mark of the student with the student number “200004”.

Once complete, save the project in the School Marks folder.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

UNIT

3.3 Applications for two-dimensional arrays

Now that you are more comfortable working with a two-dimensional array, O]}
you can use that knowledge to create the game Sudoku. In Sudoku, ARRAYS IN DELPHI -
players start with a 9 x 9 grid with a few numbers inside each 3 x 3 square
in the grid. The goal of the game is to fill each empty space in the grid with
a number between 1 and 9, in such a way that there are no duplicate
numbers within any:
°* Row
e Column
® Diagonal
® 3 x3square

https://www.youtube.com/
The image below shows an example of an incomplete and completed watch?v=0MuOM3cT30M
Sudoku game.

9 | s 3184|1957 12(6|3
5 3 9512863471
7| ¢ 4 8 7161312(4|1]5(8]9
x| 2 9 |4|s 112|713|8|6]19|4]5
8 7 3 S5(9|8)1|7]14]13[2]6
6|3 |4 1 (8|16]3|4]15]|9|1217|1]|8
8 3 9 (2|14]|8|6]7|3|5J1]|9]2
6 3 2171561191834
3 2|8 3(1(9]14|2|8)6|5]|7
Figure 3.3: A starting and completed game of Sudoku
To create a game of Sudoku in Delphi, you will need to do the following: o]
* Create a 9 x 9 array to store the user’s values and a grid to display ARRAYS IN DELPHI -

the values.

* Create a Duplicate Checker algorithm which checks if there are any
duplicates in a list of numbers.

* Create a nested-loop that sends each of the nine rows to the
Duplicate Checker.

* Create a nested-loop that sends each of the nine columns to the
Duplicate Checker.

* Create a nested-loop that sends each of the nine 3 x 3 squares to the
Duplicate Checker. https://www.youtube.com/

* Create a function to save or load starting positions. e

This chapter will complete the first four of these tasks. However, if you would like, you can complete the
last two tasks on your own.

TERM 2 | CHAPTER 3 TWO-DIMENSIONAL ARRAYS | UNIT 3.3 Applications for two-dimensional arrays

Example 3.8 Setting up Sudoku

To create the Sudoku game, you need to start by creating a grid to display the results and an array to store the
results. You also need to build the link between the grid and the array, allowing values entered into the grid to be

stored in the array. To do this:

1. Open the project saved in the 03 — Sudoku folder. You should see the following user interface.

[-F™ 1 - (=] x

Sudoku

[]

TASK/ALGORITHM

In the OnClick event of button [Check Solution]
Transfer digits from the grid to the 2D array

o Declare 9 x 9 array called aNumbers.

e Declare loop variables j and k and a 1D array
of integers called aloCheck.

e Provide code to transfer the values in the
grade to array aNumbers. Insert Q if the cell
is empty.

o Test with the values below:

© sudeky - B x
Sudoku

]

3
5
9
2
| Ok Sokion |

IMPLEMENTATION

var
aNumbers:
j: integer;
k: integer;

Array[0..8, 0..8] of Integer;

aToCheck : Array[0..8] of Integer;
Begin
{transfer from grid to array}
for j := 0 to 8 do
for kK := 0 to 8 do

if grdSudoku.Cells[k, jl <> '' then
aNumbers[j, k] :=
StrToInt(grdSudoku.Cells[k, j1)
else
aNumbers[j, k] := 0;
end;

not the numbers.

Save and test your application. To make sure the values from the string grid are being converted, add numbers or
letters to your grid and click on the [Check Solution] button. The application should give an error for the letters but

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

Checking for duplicates

o Declare the function hasDuplicates to
receive an array of integers in the
private section.

o Set functions return type to Boolean.

o Press Ctrl +Shift+Cto generate the
function stub in the implementation
section.

o Declare local variables called
bHasDuplicates, “i” and “K”.

o bHasDuplicates to FALSE.

o (Create afor-loop for “j” from 1 to 7

o Testif number is 0, skip else enter
inner loop.

o Create a nested FOR-loop for “k” from
“"+1108.

o If number [j] = number [K] then set
bHasDuplicates to TRUE.

® Return result.

private
function hasDuplicates(aCheckMe: Array of
integer): boolean;

implementation
function TfrmSudoku.hasDuplicates(aCheckMe:
Array of integer): boolean;
var
j: integer;
k: integer;

bHasDuplicates : Boolean;
begin

bHasDuplicates := false;
for j := 0 to 7 do

if aCheckMe[j] > O then
for k := j + 1 to 8 do
if aCheckMe[j] = aCheckMe[k] then
bHasDuplicates := True;
result := bHasDuplicates;
end;

Save and test your application. Since you are not passing any values to this function, you cannot test the HasDuplicate
function yet. However, by running the application you can make sure there are no syntax errors.

Well done! You now have a working duplicate checker.

In the OnClick event of button [Check
Solution]

Checking the rows for duplicates
Declare boolean variable bHasDuplicates.

Checking the columns for duplicates

Repeat the code above and replace the
highlighted line with the ones in the right
hand side.

Note how the inner loop is now referring to
the column and not to the row.

|e
[s;uloku
1

for j := 0 to 8 do
begin
for kK := 0 to 8 do

aToCheck[k] := aNumbers[j, KI;
bHasDuplicates := HasDuplicates(aToCheck);
if bHasDuplicates then
ShowMessageFmt ('Duplicate found in row %d',[]
+ 11);
end;

aToCheck[k] := aNumbers[k, jl;

if bHasDuplicates then

ShowMessageFmt ('Duplicate found in column %d',[]
+ 11);

Z

Challenge

o Create a nested-loop that sends each of the nine 3 x 3
squares to the Duplicate Checker.
o Create a function to save or load starting positions.

TERM 2 | CHAPTER 3 TWO-DIMENSIONAL ARRAYS | UNIT 3.3 Applications for two-dimensional arrays

& Activity3.10

Update your Sudoku game to inform the player when he or she wins the game. To win the game, the following
conditions need to be met:

3.10.1 There should be no 0 values in the array.
3.10.2 There should be no duplicates in any rows or columns.
Once done, save your application in the Sudoku folder.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

(LB RD Y\ PA R IV INAS Chapter 3: Two-dimensional arrays

QUESTION 1

1.1 Which of the following lines can be used to access an element from a 2D array?
a. aNumbers[4;3]
b. aNumbers[4][3]
c. aNumbers[4,3]
d. aNumbers[4,3,7]
1.2 Write the code you would use to declare a 2D Boolean array with 6 rows and 15 columns called aWinLose.
1.3 A 2D array called aRainfall has been declared to contain the average rainfall per month for five towns.
a. What structure must be used to access the monthly rainfall for all towns.
b. Write the code used to show the monthly rainfall figures in table form.
1.4 Atwo-dimensional array called aStock has been used to record the quantities of the four items for the four
departments, as shown in the table below.

AFRIKAANS HISTORY TOURISM DESIGN TOTAL

4 0 12 0
0 2 1 5
2 1 1 0
0 1 0 1

Write pseudocode to calculate the total stock per item and store these values in the array.

1.5 Three parallel arrays called aPassengers, aStations and aMonths have been declared to contain the number
of passengers that pass through a train station each month.

a. Why it is NOT possible to use a 2D array instead of three parallel arrays to store this data as given?
b. What changes would you make to store the data into a 2D array?

QUESTION 2

For this application, open the project saved in the 03 — Question 2 folder. Once done, save your project in the
same folder.

The online-shopping website of MajorMax allows customers to buy items online from various departments at their
store. The manager of the company must analyse their weekly sales figures.

The GUI below shows the interface of the program used by MajorMax to keep track of their weekly sales figures.

D Major Max - o X

MajorMax.com

TERM 2 | CHAPTER 3 TWO-DIMENSIONAL ARRAYS | UNIT 3.3 Applications for two-dimensional arrays

(HO\ BBy 0\ WA e IVINSS Chapter 3: Two-dimensional arrays continued

The program contains code that declares two arrays, aDepartments and aSales.

2.1

2.2

The aDepartments array contains the names of the various departments that sell products online

The aSales array is a two-dimensional array that contains the sales figures for the first six weeks of the year for
each department. The rows in the array represent the various departments and the columns represent various
weeks.

When the [Sales Information] button is clicked, display the content of the aSales array with suitable headings
in the redOutput component provided. All monetary values must be displayed in currency format with TWO
decimal places, as shown below.

Department Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

PCs & Laptops R 93589 R 96599 R 405677 R 502389 R 380266 R 1146.98
Tablets & eReaders R 2667.78 R 249178 R 198965 R 264788 R 160156 R 192199
Software R 670245 R 427156 R 342445 R 392455 R 308545 R 3359.77
Printers, Toners and Ink R 666234 R 665845 R 807543 R 236066 R 263544 R 736568
Cellphones R 1640533 R 974137 R 1338156 R 18969.76 R 860455 R 20207.56
Games & Drones R 1051529 R 758266 R 985656 R 753768 R 911567 R B401685
Network Equipment R 75999 R 921265 R 907098 R 643999 R 798488 R 876745
Accessories R 922065 R 809799 R 1006744 R 996087 R 1010956 R 6571.66

A report of all underperforming departments per week is required. A department is underperforming when
their sales figure is lower than the average sales for all the departments for that week. When the

[Display underperforming departments] button is pressed, display a report with the sales figures of all
underperforming departments. All monetary values must be displayed in currency format with TWO
decimal places.

The output below shows an example of an underperforming report for the first three weeks:

2.3

Underperforming departments per week:
Week 1: Average sales figure: R 7 587.59

PCs & Laptops R 93589
Tablets & eReaders R 2667.78
Software R 670245
Printers, Toners and Ink R 666234
Week 2: Average sales figure: R 6 127.81

PCs & Laptops R 96599
Tablets & eReaders R 249178
Software R 4271.56

Week 3: Average sales figure: R 7 490.35

PCs & Laptops R 4056.77
Tablets & eReaders R 198965
Software R 3424 45

Currently the data in the aSales array represents the sales figures for the first six weeks of the year. Before
the sales figures for the next week (Week 7) can be added to the array and analysed, the current data for
Week 1 must be backed up to a text file. To do this:

a. Use Delphi code to create a new text file. The name of the text file is the number of the week of the
sales figures that are archived. For example, if the sales figures for Week 1 are archived in the file, then
the name of the text file will be Week 17.ixt.

b. Save the data (with headings) to the new text file, a shown below.

PCs & Laptops: R 935.89

Tablets & eReaders: R 2 667.78
software: R 6 702.45

Printers, Toners and Ink: R 6 662.34
cellphones: R 16 405.30

Games & Drones: R 10 515.30

Network Equipment: R 7 590.99
Accessories: R 9 220.65

c. When the data for Week 1 has been archived, the data for Week 2 in the arrSales array must be moved
to the position of Week 1 in the array; the data for Week 3 must be moved to Week 2, and so on.

d. For test purposes, the sales data for the new week must be randomly generated values between R500
and R5 000.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

LB Ry P INAS Chapter 3: Two-dimensional arrays continued

e. Use code to update the labels used to display the number of the week. The new report should look as

follows.

Department Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

PCs R 1 aptops R 965 99 RANDSRTT R ADI3IAY R IAPAR R 11498 R 307747
Tablets & eReaders R 249178 R 198965 R 264788 R 160156 R 192199 R 486212
Software R 427166 R 342445 R 3924656 R 3085456 R 336977 R 3850.06
Printers, Toners and Ink R 665845 R 807543 R 236066 R 263544 R 736569 R 258594
Cellphones RO74137 R 1338156 R 1896076 R 860455 R 2020756 R 234537
Games & Drones R 758266 R 985656 R 753768 R 911567 R 840155 R 329.11
Metwuik Eguipiment R 921265 R 907098 R 643999 R 798488 R 876745 R 121838
Accessories R 809799 R 1006744 R 996087 R 1010956 R 657166 R 120624

QUESTION 3

For this application, open the project saved in the 03 — Question 3 folder. Once done, save your project in the
same folder.

A new game called Galaxy Explore is planned and needs to be developed. The purpose of the game is to prepare a
grid with a number of randomly placed planets that are not visible to the player. The player must then guess the
position of the planets on the grid. The grid will be referred to as the Game board.

The GUI below shows an early version of the user interface for the program.

Levek of difficuly Number of guesses [3.1- seoe gome] The program must do the following:
© Level1 © Populate the 2D array when the game starts.
AL Incomect quesses Row Cokmn o Allow the user to guess the positions of invisible
ol bed o planets placed randomly on the game board.
g bl 3.2 - Play o Determine whether the player has won or lost
pr—— and terminate the game. The player wins when
3.3 - Reveal planets he/she identifies two planets on the game board

within five guesses.

3.1 When the [Start game] button is pressed:
a. The [Play] button must be enabled and the rich edit components must be cleared.

b. A dash character (-) represents an open space in the aGame and a hash character (#) represents a
planet. The 2D array must first be populated with open-space characters.

c. The content of the aGame array must be displayed in the game board area.

d. The aGame array must be updated to include the appropriate number of planets. The level of difficulty
selected from the radio group rgbQ2 determines the number of planets. The following rules apply:

o Difficulty level 1: 50 positions in the array must be replaced by planets (#).
o Difficulty level 2: 40 positions in the array must be replaced by planets (#).
o Difficulty level 3: 30 positions in the array must be replaced by planets (#).

e. The value ‘0" must be displayed on Leveks of difficulty Number of guesses | For—— |

the panel pnlQ2NumberOfGuesses, ® Level 1 S

which indicates the total number of) 1evel 2 ' p——
guesses. The image below shows © Level 3 fneect quemes bd [
the user interface after the [Start Game board

game] button is pressed. -

e~

TERM 2 | CHAPTER 3 TWO-DIMENSIONAL ARRAYS | UNIT 3.3 Applications for two-dimensional arrays

(HO\ BBy 0\ WA e IVINSS Chapter 3: Two-dimensional arrays continued

3.2 When the [Play] button is clicked:

a. The player guesses the position of a planet by selecting a row number and a column number from the
combo boxes provided.

b. If the position of a planet is guessed correctly:

* Update the display to show the position of the planet (#) that was guessed correctly.
e Update the number of correct guesses on the panel pnlQ2NumberOfGuesses.

c. Inthe aGame array, replace the planet character (#) that was guessed correctly with the “Y” character to
show which planets were identified during the game play session. This information is required for the
[Reveal Planets] button.

d. If the position guessed is NOT the position of a planet, display the row and column values of the
incorrect guess in the redQ2Incorrect output area.

. Allow the player to guess the positions of planets repeatedly until he or she wins or loses the game.

e Agame is won as soon as the positions of two planets are correctly guessed.
* Agame is lost if fewer than two planets are guessed within the allowed five guesses.

. Use a message box to display a suitable message based on the outcome of the game, either ‘Game
won’ or ‘Game lost’.

0. Disable the [Play] button when the game is over. The image below shows the output if the positions of
two planets were guessed correctly within two guesses:

Levels of difficuty ~ Number of guesses l PP l
© Level 1 2

© Level 2 Incorrect guesses ~ Row Column

O Level 3 Em—— [;_T] E]

The image below shows the output if the player lost the game. The position of only one planet was guessed correctly
within five guesses:

Levels of difficuty Number of guesses 3.1 - Start game
@ Level 1
5
0 Level 2
Incorrect guesses ro
Level 3
S Bl
Game board RE, C1
RY, C3
R3, Q2 3.

3.3 When the [Reveal planets] button is clicked, write code to display the game board with all the randomly
placed planets revealed.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

CHAPTER

DATABASES AND SQL

O]
WHAT IS SQL

CHAPTER UNITS

Unit4.1 Select and sort columns

Unit 4.2 Select columns and rows

Unit 4.3 Calculated columns

Unit 4.4 Aggregate functions

Unit 4.5 Data maintenance

Unit4.6 Querying two tables

. . https://www.youtube.com/
Unit 4.7 Database applications watch?v=hWU2pvj_xlc

Learning outcomes

At the end of this chapter you should be able to

select columns and calculated fields

select columns and rows using conditions

use functions and aggregate functions when selecting data
update, add and delete data using SQL statements

query one or two tables using SQL statements

use the data from an SQL statement in a Delphi application.

INTRODUCTION
SQL stands for Structured Query Language, which is a standardised language @
that can be used to work with almost all relational databases. This includes New words

database management software (DBMS) like Microsoft SQL Server, Oracle,
SQLite, MySQL and Microsoft Access.

relational database — a
database structured to

recognise relations
SQL can also be used inside most programming languages, including Delphi, to between stored items of

communicate with databases. This allows you to complete almost any task on a information
database, including:

® adding, changing and deleting records in a table

e selecting data/records from tables

e displaying sorted records selected from a Database

e performing calculations on fields and records in tables
grouping data/records from tables

joining tables.

TERM 3 | CHAPTER 4 DATABASES AND SQL

In this chapter, you will learn how to use SQL to do these tasks, both inside and
outside of Delphi. For each unit inside this chapter, you will look at what the
different SQL commands do, what their syntax is, and how they can be used in
Delphi. To do this, your teacher will provide you with a database containing
information on the 100 most successful movies in history, together with an
executable file (MoviesSQL.exe). You will also be given a second database
containing healthcare data on carnivores, together with the executable file
(CarnivoresSQL.exe).

lllustrated below are some screenshots of the databases that you will use to test
your SQL statements.

{8 TestSQL Movies = (E X
|—5ELECI' * FROM tbIMovies;
| Execute
2] title studio_id income release_date score genre ~

P 2012 1 10775300000 2009/11/13 49 Action

2 Alice in Wonderland 2 14357000000 2010/03/05 53 Adventure

3 Avatar 3 39032000000 2009/12/18 83 Sdence fiction

4 Avengers: Age of Ultron 2 19675600000 2015/05/01 66 Superhero

5 Avengers: Infinity War 2 28656600000 2018/02/16 68 Superhero

6 Batman v Superman: Dawn of Justice 4 12230400000 2016/03/25 44 Superhero

7 Beauty and the Beast 2 17689000000 2017/03/17 65 Musical

8 Elack Panther 2 18856600000 2018/04/27 88 Superhero

9 Captain America: Civil War 2 16146200000 2016/05/06 75 Superhero

10 Coco 2 11299400000 2017/11/22 81 Animated

11 Deadpool 3 10963400000 2016/02/12 65 Superhero

12 Deadpool 2 3 10278800000 2018/05/18 66 Superhero

13 Despicable Me 2 5 13591200000 2013/07/03 62 Animated

14 Despicable Me 3 5 14487200000 2017/06/30 49 Animated

15 E.T.: The Extra-Terrestrial 5 11100500000 1982/06/10 91 Science fiction

W

< »

Figure 4.1: A snippet of the database you will be using (created using MoviesSQL.exe)

BB TestSQL Movies = 2 | b4

‘ SQL:

Total number of Records

Figure 4.2: Opening screen of the database you will be using (created using
MoviesSQL.exe)

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

Testsql_db

Please enter sql staternent followed by *;"

Figure 4.3: No SQL statement entered for the database you will be using (created using

MoviesSQL.exe)

& TestS0L Movies
SELECT * FROM TbiCainivores
Exscute
Total number of Records
»
Testsgl_db
Pleaze enter gl statement followed by *;"

Figure 4.4: Missing semicolon in the database you will be using (created using

CarnivoresSQL.exe)

| 8 TestSOL Movie
SELECT FROM ThiCarnivures; |
Execute
lestsgl_db X
EOleExcepti The SELECT st includes a d word

Figure 4.5: Syntax Error in the database you will be using (created using

or an argument name that 15 misspelled or mussing, or the

punctuation iz incormect

CarnivoresSQL.exe)

TERM 3 | CHAPTER 4 DATABASES AND SQL |

SELECT * FROM Carnivores;

Testsql db

EOleL

= The Mi

ft Jet d

X

b

engine cannct find

the input table or query “Camivores’, Make sure it exists and that

its name i3 spelled correctly

Cex]

Figure 4.6: Missing or misspelled table in the database you will be using (created using

CarnivoresSQL.exe)

@ TestSQL Movies - X
SELECT * FROM biCarnivores;

Execute

Endck Famityt, i Generalliame Numadulte NumYoung End A

b 2a1 Feldae Adnonyx jubatus Chestah 2 1
a2 Feldae Caracal caracal Caracal 2 2
ZAS Feldoe Felis nigripes Dlack-footed cat 2 0
a8 Felidase Febt choestris Wilkdcat 3 3
82 Feldae Leptadurus serval Serval 3 5
&6 Feldae Fanthera leo Lon i F
205 Febdae Fanthera pardus Lecpard 3 |
=9 Viverridae Civettictic civetta African civet 3 0
3 Viverridas Genetta genetta Common genst (1 ?
is] L Genetta Rusty-spotted genet 3 2
2 Viverridoe Genella tigrina Cape genel & 1
01 ick Atlax p Marsh mongoose 2 3
m2 et Cymictic penicl Yelow mongnoss ? 3
03 Cape grey mongoose 6 5
D4 Herpestidae Galerella sanguinea Slender mongoose 3 1

~
(d >

Figure 4.7: Successly loading data in the database you will be using (created using
CarnivoresSQL.exe)

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

UNIT

4.1 Select and sort columns

The single most important SQL command you will learn is the SELECT command. O]]
This command selects the data from a database, allowing you to either use it in
an application or show it to the user. For example, your school might use a
database containing all the learners’ information and marks. When they create
your report card, they use the SELECT command to select specific information
(certain fields) about you (such as your name, surname and marks) and place that
in a report.

SORTING DATABASES IN
DELPHI

Other examples of SELECT being used include:
® social networks selecting messages and status updates relevant to you
® games selecting the correct enemies and graphics to show

) o . https://www.youtube.com/
® music applications selecting the correct song from the database. watch?v=kV2g0yKeB7s

In this unit, you will learn how to:
e select different fields

e select distinct values

e order selected data [t is convention, but not
required, to write SQL
commands like SELECT
SELECT FIELDS and INSERT in uppercase
letters. This makes it easier
to read SQL statements.
The basic structure of a
SQL query is always the
same with the same order
in keywords even if some of
the clauses are omitted.

Did you know

The SELECT statement can consist of different clauses depending on the
information you want to display. A SELECT query doesn’t change the values in
the database, it only displays what is in the database.

SELECT syntax
SELECT field_namel, field_name2, .., field_namel®® FROM table_name;

The fields are separated with a comma (,) and only the listed fields will be
displayed.

Looking at the tbIMovies table from your example database, you could select and
show the title and income of the tbIMovies table. To do this, you would use the
following query:

Selecting movies and income
SELECT title, income FROM tblMovies;

Title and income are field names and tblIMovies is the name of the table.

Did you know

The asterisk (*) symbol can
be used as a wildcard in
place of field names to
select all the fields.

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.1 Select and sort columns

Example 4.1 Running SQL Queries in the testSQL app

1. Open the folder 04 — Movies; make sure the database Movies.mdb is present; and run the MoviesSQL.exe file
by double-clicking it.

2. Enter the following SQL query in the SQL edit box at the top of the interface.

SELECT query
SELECT title, income FROM tblMovies;

3. Click on the [Execute] button under the SQL edit box. You should now see the data from your query displayed in
the Query window below.

@ TestSQL Movies — iE X
SELECT title, income FROM tbiMovies; ‘I
o |
title income ~
pi2012 o i i 10775800000
Alice in Wonderland 14357000000
Avatar 39032000000
Avengers: Age of Ultron 19675600000
Avengers: Infinity War 28656600000
Batman v Superman;: Dawn of Justice 12230400000
Beauty and the Beast 17689000000
Black Panther 18856600000
Captain America: Civil War 16146200000
Coco 11299400000
Deadpool 10963400000
Deadpoal 2 10273800000
Despicable Me 2 13591200000
Despicable Me 3 14487200000
E.T.: The Extra-Terrestrial 11100600000
Fantastic Beasts and Where To Find Them 11395000000
W

Figure 4.8: The Query1 table only shows the “title” and “income” fields

Congratulations, you have just created your first SQL query!

Example 4.2 More examples to try

Use the procedure above to run these SQL statements.

Note that once the program is running, you may change the SQL and execute the new statement without restarting
the program. Use the Snipping tool to record your results.

SHOW ALL: SQL

1. The titles and release dates of the

o . SELECT title, release date FROM tblMovies;
movies in the tbIMovies table. -

2. The names and cities in the thIStudios
table.

3. The fields in the thiIMovies table.

SELECT name, city FROM tblStudios;

SELECT * FROM tblMovies;

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

& Activity 4.1

4.1.1 For each of the example queries, how many records were selected?

4.1.2 How do the answers compare to the total number of records in the original tables?
4.1.3 In your own words describe what the “SELECT fields FROM table” statement do?

4.1.4 What will be the difference in output if number 1 in the table above is changed to SELECT release_date, title
FROM tbiMovies.

4.1.5 A qgroup of learners were asked to display the title, genre and income of all the movies in the database,
comment on the answers given below. If you think it's wrong then state why?

a. SELECT FROM tbiMovies title, genre, income;
b. SELECT movies, genre, income FROM tbiMovies,
c. SELECT title, genre, income, FROM tbiMovies,
d. SELECT genre, income, title FROM tbiMovies;
4.1.6 Using a pen and paper, write SQL queries to select the following data.
a. The generalName and numadults from the tbiCarnivores
The scientificName and the generalName from the tbiCarnivores
The visitDate and reasonForVisit from the tb/VetVists
The generalName, numadults, numYoung and enclosureSize from the tb/Carnivores

® 2 0 T

The reasonForVisit and followUp from the thiVetVists

Once you have written down the queries, test the queries by opening the folder testSQL_app; make sure
the database Carnivores.mdb is present; and run the CarnivoresSQL.exe file as you did in the previous
examples.

DISTINCT

There are many situations where you may want to only select the unique (or distinct) values in a field, that
is, no duplicates in the same column (field). Placing the DISTINCT keyword directly after the SELECT
keyword informs the DBMS that you want to select all distinct values from a specific column. The syntax
for DISTINCT is shown below:

DISTINCT syntax
SELECT DISTINCT field_name FROM table_name;

Example 4.3

If you would like to know what the possible genres of movies in the database is, you only want to see the
distinct genres.

SELECT DISTINCT genre FROM tblMovies;

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.1 Select and sort columns

B TestSOL Movies - u] > 4

SELECT DISTINCT genre FROM tbiMovies;

Execute

genre al
» RS T

Acton

(]

Figure 4.9: A list of distinct genres from the database

In this image, the first row is empty. This is because there are empty (or null) values in the genre column.
Note no duplicate values appear in the column.

Example 4.4 More examples to try

SHOW: SQL

1. The unique cities from the thiStudios
table.

SELECT DISTINCT city FROM tblStudios;

2. The unique provinces from the

; SELECT DISTINCT i FROM tblStudios;
tbiStudios table. province udios

3. The unique release_date of movies
from the thiMovies table.

Q Activity42

4.2.1 Study table tb/Camivores and table thiVetVisits in the Carnivores database; correct the mistakes in the following
SQL statements.

a. SELECT DISTINCT ReasonForVisit FROM Carnivores;
b. SELECT FROM thiVetVisits DISTINCT EnclosureNo;
Using a pen and paper, create queries to select the following data. Did you know

4.2.2 The unique FamilyNames for the animals in the tbiCarnivores. This is very useful if you
need the values to fill a
combo box with distinct
values for user selection.

SELECT * FROM tblMovies

4.2.3 Alist of the different reasons for the vet's visits.
4.2.4 Alist of distinct enclosures.

Run CarnivoresSQL.exe to test your queries.
4.2.5 Based on the query results, how many unique animal family names are there?

Queries like these are often used to create a list of unique items that meet some criteria. For example, you
might create a query to identify movie studios that makes low-quality movies or to identify cities closely
linked to the film industry. In Unit 4.2, you will learn how to add criteria to your selection.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

ORDER BY

In the previous sections, you used the SELECT statement to select data. Now, you will learn how to sort
the data that has been selected using the ORDER BY clause. To do this, you use the following syntax:

ORDER BY syntax
SELECT field_namel, field_name2,... FROM table_name
ORDER BY field_namel order_type;

As you can see from the syntax, the ORDER BY clause introduces a new instruction to your SQL query.
The instruction tells the DBMS to organise the results of the query based on the values of a specific field.
The specific field must be one or more of the fields in the select-clause. If more, then the fields must be
separated by commas. Each field must have its own order type indicated e.g. ORDER BY field1 ASC,
field2 DESGC;

Example 4.5

If you want to organise your list of movies from the highest income to the lowest income, you could use the
following query.

Order from the Highest to the lowest income
SELECT * FROM tblMovies
ORDER BY income DESC;

A TestSQL Movies =i X
SELECT * FROM tbiMovies ORDER BY Income DESC;
Execute
D title studio_id income releace_cate score genre -

» 73] avatar 3 39032000000 2009/12/18 83 Scence fiction

90 Titanc b 30625000000 19971219 75 Hstoncal drama

67 Star Wars: The Force Awakers 2 28934800000 2015/12/18 81 Scence fiction

5 Avengers: Infinity War 2 28656600000 2018/02/16 68 Superhero

42 Jurassic World § 23203800000 2015/06/12 58 Action

4 Marvel's The Avengers 2 21263200000 2012/05/04 59 Superhero

21 Furious 7 5 21229000000 2015/04/03 67 Acton

4 Avengers: Age of Ultron 2 19673600000 2015/05/01 66 Superhero

8 Black Panther 2 18856600000 2018/04/27 83 Superhers

26 Harry Prtter and the Deathly Hallows Part 7 4 18781000000 201107/15 A7 Fantasy

68 Star Wars: The Last Jedi 2 18655000000 2017/12/15 85 Soence fiction

43 Jurassic World: Fallen Kingdom 5 15268600000 2018/06/22 59 Acton

20 Frozen 2 17871000000 2013/11/22 74 Animated

7 Beauty and the Beast 2 17685000000 2017/03/17 65 Musical

35 Incredbles 2 2 17364200000 2018/06/15 80 Animated

v

< >

Figure 4.10: Movies from highest to lowest income

As the image shows, at the end of 2018, Avatar was the highest grossing film, earning more than
R39 billion.

Did you notice the word “DESC” at the end of the query? This keyword tells your database to show the
results in descending order (from largest to smallest).

There are two order types you can use:

e ASC: Short for ascending, this organises your data from the smallest value to the largest value. ASC
can be omitted and the data will automatically be order in ascending order.

e DESC: Short for descending, this organises your data from the largest value to the smallest value.

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.1 Select and sort columns

Example 4.6 More examples to try

SHOW: SQL

1. All movies organised from the
lowest income to the
highest income.

SELECT * FROM tblMovies ORDER BY income ASC;

2. The scores of all the tbiMovies
ordered from the lowest to the
highest score.

SELECT scores FROM tblMovies ORDER BY scores;

3. Al movies organised from the
newest movie to the
oldest movie.

F VIR Queries using ORDER BY

Using the database Carnivores.mdb create and test the following ordered queries using the testSQL_app for Carnivores:

SELECT * FROM tblMovies ORDER BY release_date DESC;

4.3.1 Al of the general names of carnivores arranged alphabetically.
4.3.2 Al of the vet’s visits listed by date starting with the last visit.
4.3.3 All of the scientificNames of the Carnivores listed alphabetically.

4.3.4 The screenshot shows the fields FamilyNames and ScientificName selected from table tb/Carnivores and
arranged in a certain order.

Provide the SQL statement that could have produced this output.

FamilyNan - ScientificName
Canidae Vulpes chama
Canidae Otocyon megalotis
Canidae Lycaon pictus
Canidae Canis mesomelas
Canidae Canis adustus.
Felidae Panthera pardus
Felidae Panthera leo

Felidae Leptailurus serval
Felidae Felis silvestris
Felidae Felis nigripes
Felidae Caracal caracal
Felidae Acinonyx jubatus

Herpestidae Suricata suricatta
Herpestidae Rhynchogale melleri
Herpestidae Paracynictis selousi
Herpestidae Mungos mungo

‘ Activity 4.4 Select and sort columns

Create the following ordered queries and test in MoviesSQL.exe:

4.4.1 Select the income, score and title from the thiMovies table.
4.4.2 Select the name, city and province fields from the tb/Studios table.

4.4.3 Select the title and Score fields and order the table based on the score (from highest to lowest) from the
tbiMovies table.

4.4.4 Select the title, income and release_date fields and order the table based on the release date (from oldest to
newest) from the tbiMovies table.

4.4.5 Select all cities from the tb/Studios table. Every city must appear only once.

4.4.6 Select all movies organised by genre (ascending) and title (ascending).

4.4.7 Select all movies organised according to score (highest to lowest) and release date (oldest to the newest).
4.4.8 Select all movies organised by genre (ascending) and income (highest to lowest).

4.4.9 Select all movies organised by studio_id (from lowest to highest) and score (from highest to the lowest).

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

UNIT

4.2 Select columns and rows

In Unit 4.1 we selected columns and displayed all the data available in the selected columns. Now imagine
your bank details occupy one row in a database table and your consultant only needs your record. Why
fetch the whole table? There must be a way to select just the row that the consultant requires. This is
exactly what the function of the WHERE clause is: to select the rows according to some specific conditions.
In the case of your bank account, the consultant can select just the row with your details.

7

The WHERE syntax is given below:

Take note
WHERE syntax
SELECT field names Every record that meets the
FROM table name conditions in the WHERE
WHERE conditionl <Logic Operator > condition 2; clause will be selected.

You use the same syntax as the normal SELECT syntax, but simply add the WHERE clause at the end of
it (oefore the semicolon).

SQL does not register the line breaks in an SQL statement. As such, SELECT, FROM and WHERE can be
placed on separate lines to make the statement easier to read. This is especially important with
complex queries.

RELATIONAL OPERATORS

The Boolean expressions used with the WHERE command, are similar to those used in Delphi. The following
table lists the relational operators that can be used in SQL and shows how it is applied in the WHERE clause.

Table 4.1: Relational operators that can be used in SQL

MEANING EXAMPLE

= | Equal WHERE genre = 'action';

<> | Notequal to WHERE studio_id <> 4;

> | Larger than WHERE income > 10000000000;
>= | Larger than or equal to WHERE income >= 21224000000;
< | Smaller than WHERE id < 10;

<= | Smaller than or equal to WHERE studio_id <= 3;

Note, in SQL, strings must be surrounded by single quotation marks normally used in Delphi.

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.2 Select columns and rows

To see how the operators are used, work through the following examples.

Example 4.7 Creating a query with WHERE and one CONDITION

To create a query with WHERE:

1. Using the database Movies.mdb create and test the following queries with the testSQL_app MoviesSQL.exe:

WHERE query

SELECT title FROM tblMovies WHERE genre =

'Superhero';

This code will show all the movies in the database where the genre is ‘Superhero’. Remember, in SQL, strings

must be surrounded by quotation marks.

By clicking on the [Execute] button, you should see the following result:

8 TestSQL Movies - o

x

SELECT lille FROM tbiMuvies WHERE genre = "Superhero’;

Execute
titke

» e P

Avengers: Infinity War

Batman v Superman: Dawn of Justice
Black Panther

Captain America: Ciil War

Deadpool 2
Guardians of the Galaxy
Guardians of the Galaoxy Vol. 2
Iron Man 3
Marvel's The Avengers
Spider-Man

Sprces Man 2

SpiderMan 3

SpiderMan: Homeroming

Example 4.8 More examples to try

SHOW:

our list:

SQL

As the results show, a lot of the most successful movies are superhero movies! But how much money are the
studios earning on these movies? To answer this question, we need to look at the income of each movie in

1. WHERE query with income field added

4

B TestSOL Movies - o
SELECT title, Income FROM tbiMovies WHERE genre = 'Superhero’;
Execute
o

| 19675600000

18658500000

12230400000

1HESHH00000

Coplain Amevica: Chil W 18146200000
Deadpodl 10963900000
Deackool 2 1027RANO000
Guardans of the Calaxy 10826200000
Guardane of the Galaxy vel. 2 12093200000
Iron Man 3 17007200000
Marvels The Avengers 2LBII0000
Syl Mo 1150800000
Soder Man 2 10973200000
SpicierMan 3 12472600000
Spider-Hon; Homecoming 12322000000
Suode Squad 0455200000

SELECT title, income FROM tblMovies
WHERE genre = 'Superhero';

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

Example 4.8 More examples to try continued

SHOW: SQL

Looking at the results, you will notice that the movie with the lowest income on the list earned more than
R10 billion, while the movie with the highest income (Avengers: Infinity War) earned almost R29 billion.

Perhaps it is normal for successful movies to earn this much money. To see if this is true, you can compare
superhero movies with drama movies:

2. Change the query to select movies where the
genre is “drama”.

& TestSQL Movies R B

SELECT title, income FROM tblMovies
WHERE genre = 'Drama’;

SELECT tille, incorne FROM thiMovies WHERE genre = 'Drama’; ‘

e ncome
| I The Twiight Saga: Brealang Dawn Part 2 16 15800000

There appears to be only a single drama movie on the entire list: Twilight Breaking Dawn Part 2. So, even though
drama movies are very popular, they do not attract as large an audience as superhero movies. This may explain
why the studios are releasing so many superhero movies every year.

This begs the question: What other movie genres attract large audiences and have an income more than say
R20 000 000 000, that is, twenty billion Rand?

3. To answer this we select movies of all genres
where the income is greater than
R20 000 000 000. Show the movies' title, income

SELECT title, income, genre
FROM tblMovies WHERE income >

20000000000 ;
and genre.
@8 TestsaL Movies “« o x The list now only shows movies with an
SELECT thie, S5come, Qeris FROM Dibovies WHERE Income > 20000000000; income greater than R20 billion. There
are seven movies in total, with two
= = I | science fiction movies, two action

lithe e grine " : .
" e Pl s movies and two superhero movies and

Ay PO ouneg one historical drama.

Furious 7 1224000000 Action

Juraeoc World 330700000 Achon

Marvel's The Avengess 1ESH0000 Sugerhern

Star Warg: The Force Awakens FYSSHU0000 Soence ficton

Tiani DAISOOOOO0 Hilorical th s 25
< 3

‘ Activity 4.5 Select and sort columns

Using the App. in the folder 04 — Movies with the database Movies.mdb; create and test queries that will select the
following data:

4.5.1 Allfields of fantasy movies.

4.5.2 The title and date of all movies with an income lower than R12 billion.

4.5.3 The genre of all movies with a score higher than or equal to 80.

4.5.4 The name, the city and province of all studios in the United States.

4.5.5 All movies where the studio_id is 2 organised by genre (ascending) and income (descending).

Using the App in the folder 04 — Carnivores with the database Carnivores.mdb; create and test queries that will select
the following data:

4.5.6 All species of Carnivores that have an endangered rating of “VU”.
4.5.7 Al animals kept in enclosure ZC2.
4.5.8 All animals where the number of adults is greater than 5.

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.2 Select columns and rows

WILDCARDS AND THE LIKE OPERATOR

Wildcards are special characters that can be used in SQL to represent any character or number of
characters (letters or numbers) in a string. These wildcards are used in a WHERE clause in combination
with the LIKE operator to find values that match a specific pattern in a field.

LIKE syntax
SELECT field_names FROM table_name
WHERE field_name LIKE 'wildcard_pattern';

Did you know

Visit https://www.w3schools.com/sql/sql_
wildcards.asp for a list of wildcards.

There are two wildcard characters that can be used in wildcard patterns:
NAME DESCRIPTION DELPHI SYMBOL

Only one

ACCESS SYMBOL

This wildcard character is used in place of a single ?
character. For example, the wildcard pattern ‘c_p’
will match the words ‘cap’, ‘cup’ and ‘cop’.

Zero to many | This wildcard character is used in place of any %
number of characters, from zero to thousands. For
example, the wildcard pattern ‘c%p’ will match
words like ‘cap’ and ‘cup’, but also ‘crop’, ‘clasp’

and ‘championship’.

By using these characters to query your database, you can search for movies starting with the word “The’
by placing a percentage symbol (in Delphi) or an asterisk symbol (in Access) after it.

Example 4.9 Creating a query with WHERE and a CONDITION using LIKE with wildcards

Run the MoviesSQL app, enter and test the following queries:

Movies starting with “The”
SELECT * FROM tblMovies
WHERE title LIKE 'The%';

The results can be seen in the figure below.

8 TeasQL Movies - o =

SELECT * FROM thiMovies WHERE tite LIKE "The%";

<

Excoute
] e studo_id ncome release date score genve A

» 0 [The Amapng Spder Man 1 1 2120703 6 Superhero
71 The Chrorcies of Narnia: The Lion, the Vinich and the Wardrobe 2 WHENOIIN 20509 75 Famasy
72 The Da Vina Code 1 10618800000 2006/12/22 % Mycwery
73 The ark Knght 3 LS00 208718 ¥4 Superhero
74 The Dark Knight Rises 4 ISMESA00000 204207/20 78 Superhero
75 The Fate of the Furious 5 17309000000 2017/04/14 55 Acton
7 The Hobbit: An Unexpected Joumey 4 145400000 2012/1214 58 Pantagy
77 The Hobbit: The Sattie of the Five Armies 4 13384000000 2014/13/17 5 Fanusy
78 The Hobbit: The Desclaton of Smaug 4 LM1M00000 2013/12/13 66 Fantasy
79 The Hunger Ganes: Catching Fre 8 12110000000 2013/13/22 88 Scwnn ficlior
B0 The Hunger Games: Mockingjey - Perl 1 & 10575600000 2014/121 54
B1 The Jungle Bock, 2 13532400000 2015/04/15 77 Adventure
82 The Lion King 7 13553000000 13940706 B3 Animated
83 The Loed of B Rings: The Fellowship of lhe Ring 4 12203000000 2001/12/19 32 Farlany
B4 The Lord of the Rings: The Return of the Koy 9 1%ATAAOO000 2003/12/17 94 Fanlany

Figure 4.11: All movies whose names start with “The”

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

e [EERIEN More examples to try

SHOW:
1. The fitle and income of all movie titles ending
with 2.
8 Test50L Movies [

SFLECT title, income FROM thiMovies WHERF title | IKF '32";

e income: A
pio2]
Deadpodl 2 10276000000
Decprcable Me 2 13591200000
Gusar cheres of the Galany Vol. 7 12093200000
Harry Potter and the Deathly Hallows Part 2 18781000000
Incredbies 2 17364200000
Shrek 2 12877200000
Spider-Man 2 10973200000
The Twiight Sapa: Dreaking Dawn Part 2 11615600000
Wolf Warner 2 L Lg4auiiu

SQL

Movies ending with 2
SELECT title, income FROM tblMovies
WHERE title LIKE '%2';

the word ‘war’.

8 Test50L Movies 1] X
SELECT title, income FROM thiMovies WHERF title | IKF "Sewards';
Farcule
.é -~
5 R - : "

Caotain America; Crvl War

Rogue One: A Star Wars Story

Star Wers

Star Warg: Epgode | - The Phantom Menace

Star Wers: Prsocke 1T « Revenge of the Sith

Stor Wors: The Foroe Awokens

Star Wars: The Last Jedl

The Chronides of Nomia: The Lion, the Witch and the Wardrobe
wolf Warrior 2

Movies containing the word war

2. The title and income of all movie titles containing

Movies containing the word war
SELECT title, income FROM tblMovies
WHERE title LIKE '%war%';

3. The title and income of all movie genres
containing the word ‘drama’

8 TestsQL Movies oo m] x

SELECT utle, income FROM tbiMovies WHERE genre LIKE “dedramat’;

Excoute

it "
P The Twilght Soga: Breaking Damn Part 2
Titanic

Note this time we found 2 Movies instead of the
one found previously, where the condition was
genre = 'drama’.

Movies having ‘drama’ in the genre
SELECT title, income FROM tblMovies
WHERE genre LIKE '%drama%';

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.2 Select columns and rows

D JEROEN More examples to try continued

SHOW:

4. Say you don't remember all of the sequel numbers
of the ‘Despicable me’ movies, but you remember
that they all have a space and a single digit at the
end of the name. In this case you can make use of

8 Test5QL Movies u X

SELECT title, income FROM thiMovies WHERE title LIKE ‘Despicable Me |

Execute
ute ncome ~
P Despicable Me 2 13591200000
Despicable Me 3 14487200000

SQL

SELECT title, income FROM tblMovies
WHERE title LIKE 'Despicable Me ';

with the word Finding and followed by a 4-letter
word

5. Display records where the fitle of the movies start

& TestsaL Mevies = o x

Exedate

| SELECT = FROM thiMovies WHERE tie LIKE ‘Finding ___"; |

) tite
» 18 Findng Dory
19 Frcing News

SELECT * FROM tblMovies
WHERE title LIKE 'Finding "

A database used in business often has millions of records and the exact detail of what needs to be searched for is
not always known. Using LIKE and wildcards we can reduce the dataset to a manageable size. For example, one
only needs to know a part of a movie genre, or an address, to find what you are looking for.

& Activity 46

Using the App. in the folder 04 — Movies with the database Movies.mdb; create and test queries that will select the

following data:

4.6.1 All movies ending with the word ‘out’.
4.6.2
4.6.3
4.6.4

4.6.5 All movies ending with the word ‘man’.

All movies where the score starts with an 8 (using an underscore).
Spider-Man 2 and Spider-Man 3 (but no other Spider-Man movies).
All movies where the name starts with ‘Harry’ and ends with an ‘e’

Using the App. in the folder 04 — Carnivores with the database Carnivores.mdb; create and test queries that will select

the following data;

4.6.6 All Carnivores where the name ends in ‘mongoose’.

4.6.7 All vet visits where the animal had an injury or were injured.

4.6.8 All Vet visits where the vet treated ears.

In Delphi the ‘_’character is useful if you want to select data with a specific length, but not specific
characters. For example, if you wanted to select mobile phone numbers starting with 072, you could use
" (i.e. 7 underscore characters). This would find all 10-digit telephone

the wildcard string ‘072
numbers starting with 072.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

BOOLEAN OPERATORS

As with the Delphi conditional statements, you can use Boolean operators to combine conditions in the
WHERE clause. The table below shows three of the most common Boolean operators that can be used
in SQL.

Table 4.2: Most common Boolean operators that can be used in SQL

OPERATOR DESCRIPTION EXAMPLE

AND (condition1) AND ., .)
(condition?) WHERE (genre = 'Superhero') AND (score> 80);
OR (COﬂd!'[!Oﬂ1)OR WHERE (genre = 'Drama') OR (genre = 'Historical
(condition2)
drama') ;
NOT NOT (condition) |\ iERE NOT (country = 'United States'):
OPERATOR PRECEDENCE

The Boolean operators are executed in the following order:

Parenthesis

Multiplication, division

Subtraction, addition
NOT

AND

OR

To change the order of operations, you will need to use of brackets — much the same way as you do in
Mathematics.

Example 4.11 Creating a query with WHERE and compound CONDITIONS

Using the apps in the folder with the databases 04 — Movies Movies.mdb and 04 — Carnivores folder with the
database Carnivores.mdb; create and test queries that will select the following data.

SELECT * FROM tblMovies
WHERE (genre = 'Superhero') AND (score > 80);

The query selects all fields of superhero movies where the score is larger than or equal to 80. This will show the
following results.

8 Testsal Movies - o ®

i SELECT ™ FROM tbiMovies WHERE (genre = 'Superhero') AND (score > 80);

Cxecute
o] tte studo jd income releace date ccore genve [
13 8] Biack Panthar 2 1RASEANNNNN 201R/04/27 B8 Superhero
61 Spider-Man 2 1 10973200000 2004/06/30 83 Superhero
73 The Dark Kright 4 14064400000 2008/07/18 84 Supsihero

Figure 4.12: All superhero movies with a score above 80

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.2 Select columns and rows

DR PAS More examples to try

SHOW: SQL

1.

Select all the drama and historical drama movies SELECT * FROM tblMovies

&R TetsaL Movies - 0 X WHERE (genre = 'Drama') OR (genre =
[md"m"mmtme-'ﬁm‘}m{me-'Mwluld!m')." 'Historical drama') ;
Exguute
1] e hude d income releate_Sate oof A
P 60 The Twight Saga: " 12 8 EEhe] s
80 Tiaric & J08I5000000 19971219 r

2.

Select all the fields of all movies with a score

. .
between 50 and 90. 50 and 90 included. SELECT * FROM tblllovies

WHERE (score >= 50) AND (score <=
90) ;

3.

All movies that are not superhero and not fantasy

- . SELECT * FROM tblMovies
or animation movies.

WHERE NOT genre = 'superhero' AND
NOT (genre = 'fantasy' or genre =
'animated') ;

Q Activitys7

471

4.7.3

The clause WHERE genre LIKE ‘%drama%’ and the clause WHERE (genre = ‘Drama’) OR (genre = ‘Historical
drama’) selected the same records.
Will this always be the case? Motivate your answer.

Which one of the following WHERE clauses will select action and superhero movies with and income less than
R20 000 000 000:

a. WHERE genre = ‘action’ OR genre = ‘superhero’ AND income < 20000000000;

b. WHERE genre = ‘action” AND genre = ‘superhero’ AND income <= 20000000000;
c. WHERE genre = ‘action’ OR genre = ‘superhero’ AND income < 20000000000;

d. WHERE (genre = ‘action’ OR genre = ‘superhero’) AND income < 20000000000;
Complete the following SQL statement:

SELECT * tbIMovies genre = ‘Animated’ score > 85;

Using the apps in the folder with the databases 04 — Movies Movies.mdb and 04 — Carnivores folder with the database
Carnivores.mdb; create and test queries that will select the following data.

4.7.4
4.7.5
4.7.6
4.7.7

All movies with a genre of fantasy or a studlio_id equal to 4.

All movies that are not superhero or action movies.

All action movies with a score less than 50 and those greater than 60.

All Carnivores where the adults are over 5 years old and they do not belong to the Viverridae family.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

SPECIAL OPERATORS

SQL also includes a few special operators that help you to simplify complex conditions. These operators,
their functions and their syntax are shown in the table below.

Table 4.3: Special SQL operators

OPERATOR
BETWEEN

FUNCTION

Selects all values found between the
upper and lower values (including
the upper and lower values)

SYNTAX
WHERE field_name BETWEEN min_value AND max_value;

Selects all records that have one of
the values in the provided list
of values.

WHERE field_name IN (valuel, ... , valuebQ);

IS NULL

Selects all records that have no
value for a specific field.

WHERE field_name IS NULL
(NULL = field empty)

IS NOT NULL

Selects all records that have value
for a specific field.

WHERE field_name IS NOT NULL;

Example 4.13

BETWEEN example
SELECT * FROM tblMovies
WHERE score BETWEEN 55 AND 65;

This query will result in the following list of movies.

release_date score genre -
2017/03f17 65 Musical
2016/02/12 65 Superhero
2013/07/03 62 Animated
2013/05/24 61 Action

@ TestSQL Movies

SELECT * FROM tbIMovies WHERE score BETWEEN 55 AND 65;
Execute

ID title studio_id income

P 7 Beauty and the Beast] 2 17689000000
11 Deadpool 3 10963400000
13 Despicable Me 2 5 13591200000
17 Fast & Furious 6 5 11041800000
24 Harry Potter and the Chamber of Secre 4 12306000000
25 Harry Potter and the Deathly Hallows F 4 13444200000
31 Harry Potter and the Sorcerer's Stone 4 13647200000
36 Independence Day 3
37 Indiana Jones and the Kingdom of the 6 11012400000
39 IronMan 3 2 17007200000
40 Jumanji: Welcome to the Jungle 1 13469400000
42 Jurassic World 5 23403800000
43 Jurassic World: Fallen Kingdom 5 13268600000
44 Madagascar 3: Europe's Most Wanted 7 10456600000
45 Maleficent 2 10619000000

20021115 63 Fantasy
2010/11/19 65 Fantasy
2001/11f16 64 Fantasy
1996/07/03 59
2008/05/02 65 Adventure
2013/05/03 62 Superhero
2017/12f20 58 Adventure
2015/06/12 59 Action
2018/06f22 59 Action
2012/06/08 60 Animated
2014/05/30 56 Action

Figure 4.13: Movies with a score between 55 and 65

Take note that each of these movies have a score between 55 and 65, and a few movies (like one of the Harry
Potter movies) has a score of exactly 65.

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.2 Select columns and rows

The next example shows how the IN command works.

Example 4.14

IN example
SELECT * FROM tblMovies
WHERE genre IN ('Drama', 'Historical Drama', 'Musical');

This query will create a list of movies where the genre is either “Drama”, “Historical Drama” or “Musical”.

&8 TestsQL Movies - | X
SELECT * FROM tbiMovies WHERE genre IN (‘Drama’, 'Historical Drama', '"Musical');]’I
Execute
ID title studio_id income release_date sn:ure_ ;Jerre ~
P {7 Beauty and the Beast 2 17689000000 2017/03/17 65 Musical
88 The Twilight Saga: Breaking Dawr 8 11615800000 2012/11/16 52 Drama
90 Titanic 6 30625000000 1997/12/19 75 Historical drama

Figure 4.14: All drama, historical drama and musicals
While the same results could be achieved by writing a very long SQL query containing OR operators, the
IN operator is a lot easier to write and read.

The next example shows how the IS NULL command works.

Example 4.15

IS NULL operator
SELECT * FROM tblMovies
WHERE genre IS NULL;

This final example query will select all records that do not have a value for the genre field. This can be especially
useful if there are important differences between data with values and without values or when you are trying to find
and fix any gaps in your data.

B TestsQL Movies - O X
SELECT * FROM tbiMovies WHERE genre IS NULL; H
Execute
ID title studio_id income release_date SCOI"EQEWET
P {33! 1ce Age: Dawn of the Dinosaurs 3 12413800000 2009/07/01 50
36 Independence Day 3 1996/07/03 59
80 The Hunger Games: Mockingjay - 8 10575600000 2014/11/21 64

Figure 4.15: Movies without a genre

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

& Activity 48

Using the apps in the folder with the databases 04 — Movies Movies.mdb and 04 — Carnivores folder with the database
Carnivores.mdb; create and test queries that will select the following data.

Use special operators in each.

4.8.1 Title and studio_id of all movies with a studio_id of 1, 4,5 or 9.

4.8.2 Title and genre of all movies with an income between R12 billion and R18 billion.

4.8.3 Title, date and score of all movies without a release date.

4.8.4 Title and genre of all movies that are not action, adventure, fantasy or superhero.

4.8.5 Title of all superhero movies with a score between 60 and 80.

4.8.6 The generalName and EnclosureSize of all enclosures greater than 30 m? and less than 40 m?

Up to now, dates from the SQL database have only been selected, without being manipulated or used in
any conditions. This is because, dates, like strings, have their own rules and functions which need to
be used.

DATES IN CONDITIONS

To use a date in a condition, you need to surround the date with the hash (#) symbol. The date does not
have to follow a specific format since SQL does a good job of interpreting different dates. This means that,
if you want to enter the date 5 January 2018, you could use a number of different formats, including:

e #5 January 2018#

e #5 Jan 18#

e #2018/01/05#

The one date format you should not use is the South African standard format of day/month/year (that is,
#05/01/2018#) since SQL may interpret this as month/day/year, giving you incorrect results. Instead, it is
safer to use the international date format which goes from the largest unit of time to the smallest (that is,
year/month/day).

DATE FUNCTIONS
The following four date functions can also be used when working with dates in your database.

Table 4.4: Date functions

FUNCTION DESCRIPTION SYNTAX
YEAR Returns an integer containing the year of the selected date. YEAR(date)
MONTH Returns an integer (between 1 and 12) containing the month of the selected date. | MONTH(date)
DAY Returns an integer (between 1 and 31) containing the day of the selected date. DAY(date)
DATE Returns today’s date as a date variable. DATE()

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.2 Select columns and rows

Example 4.16

1. Which movies from your database were released on or after 1 January 20187

Date condition
SELECT * FROM tblMovi

es

WHERE release_date >= #2018/01/01#;

B TestSQL Movies - m} X
M SELECT * FROM tbiMovies WHERE release_date >= #2018/01/01#; Ul
I[Execute
ID title studio_id income release_date score genre A~
)[:ﬁnvemers: Infinity War 2 28656600000 2013/02/16 68 Superhero
8 Black Panther 2 18856600000 2018/04/27 88 Superhero
12 Deadpool 2 3 10278800000 2018/05/18 66 Superhero
35 Incredibles 2 2 17364200000 2018/06/15 80 Animated
43 Jurassic World: Fallen Kingdom 5 18268600000 2018/06/22 59 Action
48 Mission: Impossible - Fallout 6 11074000000 2018/07/27 B85 Action
96 Venom 1 10922800000 2018/10/05 35 Superhero

Figure 4.16: Movies released since the start of 2018

2. Which movies from the database were released in 20127

condition using a Date function
SELECT * FROM tblMovies WHERE YEAR(release date)

» {32} 1ce Age: Continental Drift
44 Madagascar 3: Europe's Most Wanted
45 Marvel's The Avengers
Skyfall
70 The Amazing Spider-Man
74 The Dark Knight Rises
76 The Hobbit: An Unexpected Journey
88 The Twilight Saga: Breaking Dawn Part 2

When using dates in conditional statements, all the Boolean operators, including AND, OR and BETWEEN,

can be used.

3 12280800000 2012/07/13 49 Animated
10456600000 2012/06/08 60 Animated
21263200000 2012/05/04 59 Superhero
15520400000 2012/11/09 81 Action

15188600000 2012/07f20 78 Superhero
14295400000 2012(12f14 58 Fantasy

7
2
1
1 10610600000 2012/07f03 66 Superhero
4
4
8

11615800000 2012/11f16 52 Drama

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

{8 TestSQL Movies - o x I
I SELECT ™ FROM tbiMovies WHERE YEAR(release_date) = 2012;
— |
ID title studio_jd income release_date score genre ~

2012;

& Activity 49

Using the apps in the folder with the databases 04 — Movies Movies.mdb; create and test queries that will select the
following data.

4.9.1 Show all of the movies released before the start 1994.

4.9.2 Show all of the movies released after 10 June 2016.

4.9.3 Show all of the movies released between the start of 2000 and the end of 2005.
4.9.4 Show all of the movies released on the first day of the month.

4.9.5 Show all of the movies released in the last three months of the year.

4.9.6 Show all of the movies released in 2009.

‘ Activity 4.10 Select columns and rows

Write down the following queries using pen and paper. Make sure that all calculated fields have field names.

4.10.1 Select the title and score of all fantasy movies.

4.10.2 Select all movies made by the second studio.

4.10.3 Select all movies with an income smaller than R13 billion and a score below 50.
4.10.4 Select all movies with a score above 90 that are not animated.

4.10.5 Select all, superhero, fantasy and science fiction movies using the IN operator.
4.10.6 Select all movies that do not have a release date.

4.10.7 Select all movies that contain the word ‘me’.

4.10.8 Select all movies released before 1999.

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.2 Select columns and rows

UNIT

4.3 Calculated columns

o] When working with datasets, you may wish to perform some calculations on a field
before returning the selected data. For example, your Movies database is showing
CALCULATED FIELDS the income of the movies in Rands, even though most of the income was earned in

dollars. In situations outside of South Africa, you may wish to first convert the
income to dollars before displaying the results. To do this, you need to make use of
a calculated field.

@

A calculated field is displayed in the same was as

any other field on your table. The only difference New words
between a normal field and a calculated field is that, calculated field — the field
https://www.youtube.com/ as the name suggests, the calculated field is

that is calculated each time
you run your query

watch?v=MAPYm9I9WQc

calculated each time you run your query. This means
that the data from the calculated field is never stored
on the database itself, but instead is recalculated
each time.

To create a calculated field, you enter the calculation into your SQL query as a selected field.

Calculated field syntax
SELECT field_names, calculation
FROM table_name;

The problem with these queries is that the calculated fields do not have a heading. This makes it difficult
to interpret the results. To assign a name to the heading, you need to use the AS clause, as shown in the
syntax below.

Calculated field syntax with AS
SELECT field_names, calculation AS calculated_field _name
FROM table_name;

Calculated field names cannot be used in the other clauses such as ORDER BY.

SQL calculations use the same mathematical operators (and order of operations — BODMAS) as
calculations inside Delphi.

Example 4.17

In the query below, the income is divided by 14 to convert the Rands into Dollars. This is therefore a calculated field.
Using the AS command, the calculated field is given the name “dollar_income”.

: @ TestSQL Movies - o *
Calculated field example T
SELECT title, income/14 AS dollar_income
FROM tblMovies; e
itk dholler_jrweme "
3 T7] |
. Alice in Wonderand 1025500000
Looking at the image alongside, you will see that there is a Avoter 17000000
. . . Avengers: Age of Uiven 1905400000
new calculated field called dollar_income which shows the v Wity Woe ass00000
a-A q . - Batman v Superman: Down of Juatice B73600000
original income of the movies divided by 14. Baauty and e Baast 1263500000
Dlack Panther 1244300000
Captan amenca: Ol War 1153200000
Coco BOT100000
Deadpool P R0 i o

Figure 4.17: Selection with a calculated field

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

‘ WO ESERS Select columns and rows

Using the apps in the folder with the databases 04 — Movies Movies.mdb and 04 — Carnivores folder with the database
Carnivores.mdb; create and test queries that will select the following data.

4.11.1 All movies showing the movie tifle and a calculated field called fower_score that subtracts 10 from the score.

4.11.2 All movies showing the movie tifle and a calculated field called income_in_billions that divides the income by
1000 000 000.

4.11.3 All carnivores listing the general name and a calculated field Total_Number_Animals where the family name is
‘Canidage’.

FUNCTIONS IN CALCULATIONS

Previously we used the DATE functions as part of the conditions to select records. Functions can also be
used in calculated fields as part of the calculation or to format the result of a calculation.

NUMBER FUNCTIONS

As you start using calculated fields more often, you will notice that these fields are often not
formatted correctly.

Example 4.18

All carnivores listing the general name and a calculated field AreaPerAnimal where area_per_animal is less than
6 m? per animal to determine overcrowded enclosures. The calculated field name cannot be used in the WHERE
clause, only the actual calculation.

SELECT GeneralName, enclosureSize /(numAdults + numYoung)AS AreaPerAnimal
FROM tblCarnivores
WHERE enclosureSize /(numAdults + numYoung) <6;

& TestSOL Camivores - a 4
SELECT 1 i Pl duits + q) AS AreaF | FROM thiCarnivores WHERE enclosuresize /(numadults + numivoung) <6;
Execute
eneralliame Areaberanmal -
3= S LS
Yedow mongooas 55
Cape grey mongoose 3.09090909090909
Comemon dwarf mongoose .25
White-taled mongocse 53
Selous’ mongone 44
Meeriat 5.33333333333333
Sported hysna 44
Cape fox 4.18151818181818
Side-striped Jackal LRTSTREITRTEILeY
‘Weddell seal 5.55555555955556
L

To fix this, you can use the four functions shown in the table below as part of your SQL commands:

FUNCTION DESCRIPTION SYNTAX

INT Returns a whole number, discarding any decimal INT(field)
value.

ROUND Rounds a number to the indicated number of ROUND(field, decimals)
decimals.

STR Returns a DateTime or number as a string. STR(field)

FORMAT Returns a DateTime or number as a string in a FORMAT (field, formatstring)
specific format.

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.3 Calculated columns

SENCERERN continued

Replace the SELECT clause above with the ones below.

SELECT GeneralName, STR(enclosureSize /(numAdults + numYoung)) AS

AreaPerAnimal FROM tblCarnivores;

ﬁ TestSQL Camivores o O X
SELECT GeneralName, STR(enclosureSize /(numAdults + nt
Execute

GeneralName AreaPerAnimal -
P Cape genet 5.55555555555556

Yellow mongooss 5.5

Cape grey mongoose 3.00090909000009

Common dwarf mongoose 3.25

White-taled mongoose 5.5

Selous’ mongoose 4.4

Meerkat 5.33333333333333

Spotted hyena 4.4

Cape fox 4.18181818181818

Side-striped jackal 5.11111111111111

Weddell seal 5.55555555555556 %
< >

SELECT GeneralName, ROUND(enclosureSize /(numAdults + numYoung),2) AS

AreaPerAnimal FROM tblCarnivores;

GeneralName AreaPerAnimal
P Cape genet 5.5
Yellow mongoose 5.5
Cape grey mongoose 3.09
Common dwarf mongoose 3.25
White-tailed mongoose 5.5
Selous’ mongoose 4.4
Meerkat 533
Spotted hyena 4.4
Cape fox 4.18
Side-striped jackal 5.11
Weddell seal 5.56

SELECT GeneralName,

INT (enclosureSize /(numAdults + numYoung)) AS

AreaPerAnimal FROM tblCarnivores;

& TestsQL Camivores

SFLFCT , INT(enclosures

dults + q)) AS Arear

FROM thiCarnivores WHERF ent

i

|

Y A A L R T FRY)

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

S ENEERERS continued

SELECT GeneralName, FORMAT(enclosureSize /(numAdults + numYoung), '00.00')
AS AreaPerAnimal FROM tblCarnivores;

‘00.00° Output when ‘00.00" is replaced with ‘##.##
GeneralName AreaPerAnimal GeneralName AreaPerAnimal
P Cape genet 05.56 b Cape genet 5.56
Yellow mongoose 05.50 Yellow mongoose 5.5
Cape grey mongoose 03.09 Cape grey mongoose 3.09
Common dwarf mongoose 03.25 Common dwarf mongoose 3.25
White-tailed mongoose 05.50 White-tailed mongoose 5.5
Selous’ mongoose 04.40 Selous’ mongoose 4.4
Meerkat 05.33 Meerkat 5.33
Spotted hyena 04.40 Spotted hyena 4.4
Cape fox 04.18 Cape fox 4.18
Side-striped jackal 05.11 Side-striped jackal 5.11
< <

Take note that the format string from the FORMAT function takes similar string values to Delphi’s. A few
FORMAT examples with their outputs are shown below:

e FORMAT(release_date, ‘dd mmmm yyyy’) — 15 October 2018

e FORMAT(release_date, ‘dd-mm-yy’) — 15-10-18

e FORMAT(release_date, ‘dd mmm yyyy hh:nn:ss’) — 15 Oct 2018 12:15:52

e FORMAT(income, ‘0.00’) — 15130000000.00

e FORMAT(income, ‘0.##) — 15130000000

e FORMAT(income, “Currency”) — R15,130,000,000.00

e FORMAT(NumYoung/(NumYoung + NumAdults), ‘0%’) — 84%

& Activity4.12

4.12.1 How does the use of INT change the format of the output AreaPerAnimal compared to the original output?

4.12.2 Explain the difference in output when ‘00.00" and ‘##.## was used to display AreaPerAnimal.
4.12.3 What will the AreaPerAnimal output look like if the format string is ‘#.00'?

Create the following queries with calculated fields using a pen and paper, making sure to give each calculated field a
meaningful name.

4.12.4 Show all movies’ titles and incomes (converted to an integer).

4.12.5 Show all movies' titles and incomes (rounded to 1 decimal point).

4.12.6 Show the movies’ titles and scores (divided by 100 and formatted as a percentage).
4.12.7 Show only the release dates of movies (formatted as 15/12/2018).

4.12.8 Show the movies’ titles, income (formatted as a currency) and score (divided by 100 and formatted as a
percentage).

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.3 Calculated columns

DATE FUNCTIONS

When creating calculated columns, the names of functions (such as YEAR, MONTH, and DAY) cannot be
used as field names. See list of DATE functions in Unit 4.2 on page 127.

Example 4.19

Select all movie titles and the year of their release and display the latest movies first.

SELECT title, YEAR(Release date) AS YearReleased FROM tblMovies ORDER BY
YEAR(Release_date) DESC;

A TestsQL Movies = m} X
SELECT title, YEAR({Release_date) AS YearReleased FROM tbimovies ORDER BY YEAR(Release_date) DESC;
Execute
title YearReleased Al
P Incredibles 2 2018 |

Venom 2018

Jurassic World: Fallen Kingdom 2018

Mission: Impossible - Fallout 2018

Deadpool 2 2018

Black Panther 2018

Avengers: Infinity War 2018

Pirates of the Caribbean: Dead Men Tell No Tales 2017

Beauty and the Beast 2017

The Fate of the Furious 2017

Star Wars: The Last Jedi 2017

Coco 2017

Despicable Me 3 2017

Jumanji: Welcome to the Jungle 2017

Guardians of the Galaxy Vol. 2 2017

Spider-Man: Homecoming 2017 v

& Activity4.13

Use MoviesSQL app with the databases “Movies.mdb”; create and test queries that will select the following data.
4.13.1 Show all movie titles, release_dates and the year of their release.

4.13.2 Show all the movie titles released on the first day of the month.

4.13.3 Show all the movie titles released in the last three months of the year.

4.13.4 Show all the movie titles released in 2009.

4.13.5 Show all the movie titles release dates and their age (in days).

4.13.6 Show all the movie titles release dates and their age (in months)

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

STRING FUNCTIONS
Just like Delphi, SQL allows you to manipulate strings in different ways. The table below shows four
different string functions you can use in your SQL queries.

Table 4.5: Four different string functions used in a SQL query

FUNCTION DESCRIPTION SYNTAX

LEN Returns the number of characters in a string. LEN(string)

LEFT Returns the indicated number of characters from the start | LEFT(string, num_Characters)
of the string.

RIGHT Returns the indicated number of characters from the end RIGHT(string, num_Characters)
of the string.

MID Returns the indicated number of characters from a MID(string, first_character, characters)
specified point in the string.

Example 4.20

Show the first five characters of all studios’ names.

SELECT DISTINCT LEFT (name,

4 TestSQL Movies - m} X

“ SELECT DISTINCT LEFT (name,S) AS FirstFive FROM tbiStudios;

|

Execute

FirstFive

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.3 Calculated columns

5) AS FirstFive FROM tblStudios;

& Activity4.14

Create the following queries using string functions. Make sure to give each calculated field a relevant name.

4.14.1 Show the second, third and fourth character of all studios’ cities.

4.14.2 Show all movies’ titles, as well as the length of the titles.

4.14.3 Show the first and last letter of all the studios’ names.

4.14.4 Show the first 2 letters of the enclosure name from the table carnivores as the Enclosure types.

COMBINING STRINGS

The final type of calculated field is created by combining two strings. To do this, you simply add the one
string to the second string using the plus (+) operator. This can be combined with functions such as STR
and FORMAT to combine numbers or dates with strings.

Example 4.21

Appending the ‘%’ symbol to the score.

Integer score to percentage
SELECT title, STR(score) + '%' AS score_percentage FROM tblMovies;

& Activity4.15

Create the following queries using thiMovies from the Movies.mdb database and the tb/VetVisits from the
Carnivores.mdb database with a combined string using pen and paper, making sure to give each calculated field
a relevant name.

4.15.1 Show all movie titles’ and incomes, where the income is converted to billions (i.e. divide by 1 000 000 000) and
the string ‘bn’ is added to the end of it.

4.15.2 Show the movie studios’ names and locations (as ‘City, Province, Country’).

4.15.3 Show all animals where the followUp field has the value false. List the animal name, reason for visit and the
Animal_ID, and the string, ‘No follow up required’.

Always remember to consider spaces when combining strings. In the third question, a space is added
after each comma.

F ROVEITHREN Calculated fields

Write down the following queries using tb/Movies from the Movies.mdb database and tbIVetVisits from the
Carnivores.mdb database using pen and paper. Make sure that all calculated fields have appropriate field names.

4.16.1 Show all the movie titles’ release dates and their age (in years).

4.16.2 Show month and day of vet’s visits.

4.16.3 Select all movies released on the 12th day of the month.

4.16.4 Select the movie titles and the income divided by 1.15 to remove VAT. Use an appropriate heading and format.
4.16.5 Select all titles and show the year, month and day of release separately from the tb/Movies table.

4.16.6 Display the first two and last two letters of each movie’s fitle.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

UNIT

4.4 Aggregate functions

Up to now, all the calculated fields have manipulated the values of an individual O]
record. This is useful if you want to work with the data from records but is not very
useful if you want to work with the overall data from the dataset. When you want
to answer question about the overall dataset, you need to use the aggregate SQL
functions.

AGGREGATE FUNCTION

In this section, you will learn about five aggregate functions.

Table 4.6: Five aggregate functions

FUNCTION DESCRIPTION SYNTAX]
https://www.youtube.com/

SUM Calculates the sum of all values in a field. SUM(field_name) watch?v=0s1wS0wLC1w

AVG Calculates the average value for a field. AVG(field_name)

MIN Returns the minimum value in a field. MIN(field_name)

MAX Returns the maximum value in a field. MAX(field_name)

COUNT Counts the number of records that have values in | COUNT(field_name)

a field.

Each of these functions will complete a calculation on your dataset and return a single value as the result.
Since these functions return a single value (rather than a value for each record), they cannot be used in a
query with other fields (such as title or genre).

Example 4.22

SELECT title, SUM(income)
AS total_income
FROM tblMovies;

Doing this will result in an error.

,ﬂ TestSQL Movies (]

” SELECT title, SUM(income) AS total_income FROM TbiMovies;

Execute

Testsql_movies x

EOleException - You tried to execute a query that does not
include the specified expression 'title' as part of an aggregate
function

Figure 4.18: Aggregate function with a normal field

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.4 Aggregate functions

Here is the syntax for the aggregate function:

syntax for aggregate functions
SELECT Aggregate function(field _name) AS calculated name
FROM table_name WHERE condition;

There are hundreds of different uses for the aggregate function. It allows you to answer questions about

your entire dataset. Let’s look at some examples:

Example 4.23

To find the sum of the income from all movies, you could do the following query:

SUM
SELECT SUM(income) AS total_income FROM tblMovies;

r. TestSQL Movies a O x

SELECT SUM(income) AS total_income from thiMovies;

Execute

total_income
» 5123000000

Example 4.24

To find the average of the income from all movies, you could write the following query:

AVG
SELECT AVG(income) AS avg_income FROM tblMovies;

(@ TesisQL Movies - (] be

SELECT AVG(income) AS avg_income from tbiMovies;

Execute

avg_income
P 4151230000

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

Example 4.25

To find the lowest score given to an action movie, you could use the following query.

MAX or MIN example

SELECT MIN(score) as lowest score
FROM tblMovies

WHERE genre = 'Action';

& TeetSOL Movies - 0 X

SELECT COUNT(genre) AS num_of_superhero FROM TbiMovies WHERE genre - *Superhero';

Execute

| rum_of_suparhero ~l
» 3 |

Figure 4.19: Finding the lowest score given to an action movie

Example 4.26

To count the number of superhero movies, you could write the following query:

COUNT with WHERE

SELECT COUNT (genre) AS num_of_superhero
FROM tblMovies

WHERE genre = 'Superhero';

SELECT MIN(score) os lowest_score FROM tbiMovies WHERE genre - 'Action’;

Execute

| lowast_gcore
» 2

Figure 4.20: Number of superhero movies

& Activity4.17

Using a pen and paper, write down SQL queries to answer the following questions.

4.17.1 How many movies have a score below 507

4.17.2 What is the maximum income earned by any movie?

4.17.3 What is the minimum score earned by an animated movie?

4.17.4 What is the total income earned by all movies containing the words ‘Harry Potter’ in their title?
4.17.5 What was the average score received by all movies from studio_id2?

Once complete, use these queries in the MoviesSQL App.

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.4 Aggregate functions

GROUP BY

The problem with aggregate functions is that they only return a single value. If you want to compare the
scores obtained by different genres of movies, you would need to write a separate query or create a
separate calculated field for each genre. This is not very practical, especially not with large databases. To
fix this problem, you can use the GROUP BY clause.

As the name suggests, the GROUP BY clause groups your records according to their value in a specific
field. Once this has been done, the aggregate function is applied to each of these groups. The specific
field must also be included in the SELECT clause to serve as a label for the groups. The GROUP BY clause
comes at the end of the statement after the FROM and WHERE clauses.

The GROUP BY clause uses the following syntax:

GROUP BY syntax

SELECT group_field_name, aggregate function (value_field name)
AS result_field_name

FROM table name

GROUP BY group_field_name;

Example 4.27

Using the GROUP BY clause you could group all of the movies in your database according to genre and then
calculate the average score for each genre. Using this syntax, you can view the average score of the different genres
of movies in your database with the following query.

GROUP BY example

SELECT genre, AVG(score) AS average score
FROM tblMovies

GROUP BY genre;

8 TestSQL Movies %
SELECT genre, AVG(score) AS average_score FROM thiMovies GROUP BY genre;
Execute

geme average_swe -
B[s7.eeseessesses?

Action 58,0675

Adventure 55

Anmated 7L

Drama 52

Fantasy 74.25

Historical drama 75

musical 85

Mystery L]

Soence ficton 755

Superhern 67.47R2608605652 >

Figure 4.21: Average score of different genres of movies

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

& Activity4.18

Create queries from tblCarnivores that show the following information.

4.18.1 The number of movies on the list, per genre.

4.18.2 The total income earned, per studio.

4.18.3 The release date of the most recently released movie by each studio.

4.18.4 The average score of movies earning more than R14 000 000 000, per genre.
4.18.5 The number of movies earning more than R14 000 000 000, per studio.

HAVING

The HAVING clause allows you to add a condition to the grouped results, so that only groups meeting the
condition will be shown. This is done by placing the HAVING clause after the GROUP BY clause, as shown
in the syntax below.

HAVING syntax

SELECT group_field_name, aggregate_function(value_field_name)
AS result_field _name

FROM table_name

WHERE condition

GROUP BY group_field_name

HAVING group_condition;

Using this syntax, the group condition will check if an aggregate function returns a result that is larger than,
smaller than, or equal to a specific value.

Example 4.28

Create a query that shows number of movies per genre where the genre has five or more movies.

HAVING

SELECT genre, COUNT(*) AS num_of Movies
FROM tblMovies

GROUP BY genre

HAVING COUNT(*) >= 5;

8 TestSQL Movies - (m} X

[EELECI’ genre, COUNT(™) AS num_of_Movies FROM TbiMovies GROUP BY genre HAVING COUNT(*) >=5; H

Execute

genre num_of_Movies |
P Action 16

Adventure 8

Animated 20

Fantasy 16

Science fiction 10

Superhero 23

Figure 4.22: Genres with more than 5 movies

The calculated field name cannot be used in the HAVING clause, only the actual calculation.

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.4 Aggregate functions

& Activity 419

Using the HAVING clause, create queries that show the following information.

4.19.1 The number of movies per studio_id, only showing studios with 10 or more movies.
4.19.2 The total income per studio where the total income earned is greater than R150 000 000 000.
4.19.3 The average score per genre where there are at least 5 movies in the genre.

7

Take note

In 4.19.3, the ‘group’ condition (HAVING clause) uses a different
aggregate function to the aggregate function in the calculated field.

‘ Activity 4.20 Aggregate functions

Write down the following queries using pen and paper.

e Make sure that all calculated fields have field names.
e Do not show any empty records.

e Use appropriate formatting.

4.20.1 Find the earliest release date for any movie.

4.20.2 Find the average score earned by all movies, rounded to 2 decimals.
4.20.3 Find the highest income earned by an animated movie.

4.20.4 Find the number of movies with an income larger than R15 billion.
4.20.5 Find the average income of movies with a score above 90.

4.20.6 Find the average income of movies based on their genre.

4.20.7 Find the maximum Score of movies based on their studio.

4.20.8 Find the maximum score of movies based on their studio. Do not show empty studio_id’s and display the
studio names instead of the studio id number.

4.20.9 Find the minimum Score of movies based on their release year (a calculated column).
4.20.10 Show the total income of all genres that have earned more than R100 billion.
4.20.11 Show the average score of all studios, rounded to 2 decimals, that have a score above 70.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

UNIT

4.5 Data maintenance

In the previous units, you learned how to use the SELECT statement to select
and display data from your database. In this unit, you will learn how you can
make changes to a database by using the INSERT INTO, UPDATE and DELETE
statements. These statements change the data values in the database.

INSERT INTO

To add additional records to a database, you use the INSERT INTO statement.
The syntax for this statement is shown in the code snippet below:

INSERT INTO
INSERT INTO table_name (field_names)
VALUES (new_values);

When using the INSERT INTO statement, the different field names are separated
using commas. Similarly, the values added to those fields must also be separated
with commas and must be in the same order (and data type) as the fields listed
in the previous line/listed field names. The field names in the first bracket can be
omitted if values for ALL the fields are inserted. The values must then be in the
same order as the field names in the database table.

Example 4.29

Create the following query to add the movie “Aquaman” to the tbIMovies table:

INSERT INTO

INSERT INTO tblMovies (id, title, studio_id, income,
release_date, score, genre, studio_ID)

VALUES (101, "Aquaman", 4, 14353000000, #2018/12/21#,
55, “Superhero”,);

When inserting data into a table, pay careful attention to the following:

e The field names are spelled correctly.

e All field names are separated by a comma.

e The values are added in the same order and data type, as the field names.
® Avalue is added to the primary key field.

® The value added to the primary key field is unique.

e All string values are surrounded by double quotation marks.

e All date values are surrounded by the hash (#) symbol.

HOW TO CONNECT AND
INTERACT WITH
A DATABASE

https://www.youtube.com/
watch?v=dwbOwv6lJgA

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.5 Data maintenance

& Activity4.21

Using a pen and paper, write down the queries needed to add the following data to the correct tables.
4.21.1 tbiMovies table:

ID TITLE STUDIO_ID INCOME RELEASE_DATE SCORE GENRE

102 | Bohemian Rhapsody 3 10846000000 2 November 2018 | 49 Musical

103 | Fantastic Beasts: The 4 9069000000 16 November 52 Fantasy
Crimes of Grindelwald 2018

104 | Ant-Man and the Wasp | 2 8718000000 70 Superhero

4.21.2 thiStudios table

STUDIO_ID PROVINCE COUNTRY

11 Polybona Films Beijing Hebei China

Rather than creating three INSERT INTO statements to add movies to your database, you can use a single
query where the new records are separated by commas, as shown in the syntax below.

INSERT INTO syntax (multiple records)
INSERT INTO table_name (field_names)
VALUES (new_valuesl),
(new_values2),

(new_values3);
As with a single record, you need to make sure that the values of the three records are aligned with the

field names. If the record does not have a value for a specific field, a comma should still be added but the
space before the next comma can be empty.

Example 4.30

The code below inserts the three movies Bohemian Rhapsody, Fantastic Beast and Ant-Man and the Wasp.

INSERT INTO tblMovies (ID, title, studio_id, income, release_date, score,
genre)

VALUES

(102, "Bohemian Rhapsody", 3, 10846000000, #2018/11/2#, 49, "Musical"),
(103, "Fantastic Beasts: The Crimes of Grindelwald", 4, 9069000000,
#2018/11/16#, 52, "Fantasy"),

(104, "Ant-Man and the Wasp", 2, 8718000000,, 70, "Superhero");

7

Take note

The release_date of Ant-Man and the Wasp is not
known and therefore left blank between the commas.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

UPDATE

The UPDATE statement allows you to make permanent changes to a record’s values. This is useful to fix
mistakes, update information or add missing information to existing records. However, if used incorrectly,
it also has the ability to replace the data from your entire database with garbage, so it is important to be
very careful when using the UPDATE statement.

The UPDATE statement has the following syntax:

UPDATE syntax

UPDATE table_name

SET field_namel = Newvalue, field_name2 = Newvalue,
WHERE condition;

As with most SQL queries, you start by selecting the table you will be using. In the second line, you select
the fields and set the new values. When setting the values, make sure that the values are in the correct
format and follow the field’s rules (such as adding a unique value for the primary key). Finally, in the last
line, you use the WHERE statement to select the fields whose values you would like to change.

Example 4.31

In the tbiMovies table, the movie ‘Independence Day’ does not have an income or genre. To add values to these
fields, you can use the following query:

UPDATE example

UPDATE tblMovies

SET income = 11444000000, genre = 'Science Fiction'
WHERE title = 'Independence Day';

The WHERE clause is incredibly important when updating values, since the changes made by the UPDATE
statement will be applied to each record meeting the WHERE clause conditions. If you leave out the
WHERE clause, you will update each record in your table and have no way of recovering the old data.

In order to ensure you do not update the incorrect records, follow these guidelines when creating a

WHERE clause:

* \When updating a single record, you can use the primary key to select the correct record.

e Before making changes to the data, first create a separate SELECT query to ensure that you are only
selecting the appropriate records before using UPDATE statement.

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.5 Data maintenance

With this information in mind, complete the following activity.

& Activity4.22

Take a look at the image below.

(@ TestsQL Movies] X

SELECT * FROM tbIMovies WHERE Genre IS NULL;

Execute
. D ttle studo_id income release_date score genre ~l
» 33 Ice Age: Dawn of the Dincsaurs 3 2413800000 7/1/2009 50
80 The Hunger Games: Modangjay - Part 1 8 0575600000 11/21/2014 54

| €

4.22.1 Using a pen and paper, write down the queries needed to add the
missing information to the films.

MOVIE NAME GENRE Take note
The Lord of the Rings: The

Ice Age Animals

Two Towers was released in
Hunger Games Action 2002 on 18 December.

4.22.2 Write down an SQL query that you use to increase the income of all films before the year 2000 by 10%.

DELETE FROM

The final SQL statement you will learn about is DELETE FROM, which deletes all records meeting the
specified condition. The syntax for DELETE FROM is given in the code snippet below.

DELETE syntax
DELETE FROM table_name
WHERE condition;

As with the UPDATE statement, it is incredibly important that only the records you want to delete meet the
WHERE condition, since any other records meeting this condition will also be deleted.

Example 4.32

To delete the 100th record from the thIMovies table, you could use the following query.

DELETE examples
DELETE FROM tblMovies
WHERE id = 100;

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

& Activity4.23

Using pen and paper, write down queries that will delete the following records:
4.23.1 The movie released on 5 May 2017.

7

4.23.2 The movie called ‘Despicable Me 2’ Take note

4.23.3 All superhero movies. First create a backup for

4.23.4 Al movies with ‘Star Wars’ in the title. the original disk before you
write the update and delete

4.23.5 All movies released before the 5th day of the month.
4.23.6 All movies with a score below 60 and an income below 14 000 000 000.

‘ Activity 4.24 Data maintenance

Write down the following queries using pen and paper. Make sure that all calculated fields have field names.
4.24.1 Add the following South African film studio to the tb/Studios table.

SQLs

STUDIO_ID NAME FULL_NAME CITY PROVINCE COUNTRY

12 CTFS | Cape Town Film Studios | Cape Town | Western Cape | South Africa

4.24.2 Add the following films to the tbiMovies table using a single query.

) TITLE STUDIO_ID INCOME RELEASE_DATE SCORE GENRE
105 | Ready Player One 3 20 July 2018 64 Science
Fiction
106 | The Meg 3 7423000000 | 10 August 2018
107 | Mamma Mia! Here We | 5 5526000000 60 Musical
Go Again

4.24.3 Update the score of the movie with the ID 106 to 46.

4.24.4 Change the genre of all science fiction movies to ‘Science-Fiction’.
4.24.5 Delete all movies released before the year 2000 from the thiMovies table.
4.24.6 Delete all studios not based in the United States from the tbiStudios table.

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.5 Data maintenance

UNIT

4.6 Querying two tables

In a relational database, there are many situations where you may want to select data from more than one
table at the same time. To do this, you will use a special condition in the WHERE clause to link the two
tables.

To create a link between two tables, you use the following syntax.

Join syntax

SELECT tablel.field_name, table2.field_name
FROM tablel, table2

WHERE tablel.foreign _key = table2.primary_key;

As the syntax shows:

e The first line selects the field names and the tables from which they must be taken.

e The second line lists both the table names in the FROM clause, separating the table names with
a comma.

* |nthe WHERE clause, you set the foreign key of one table equal to the primary key of the other table.
This condition creates the link between the tables. If this condition is omitted in the WHERE clause
your result set will display a lot of duplicate values.

Example 4.33

The query below will show the name of the film as well as the name of the studio that produced it.

Join example

SELECT tblMovies.title, tblStudios.name

FROM tblMovies, tblStudios

WHERE tblMovies.studio_id = tblStudios.studio_id;

Running this query will return the following results:

& TestSQL Movies - 0 X
SELECT tbiMovies.title, thiStudios.Name FROM tbiMovies, tblStudios WHERE tbiMovies. Studio_ID = thiStudios. Studio_ID;
Execute
| tite Name A
b 2012 Sony
| Alice in Wonderland Disney
| Avatar Fox
| Avengers: Age of Ultron Disney
| Avengers: Infinity War Disney
| Batman v Superman: Dawn of Justice Warner Brothers
Beauty and the Beast Disney
‘ Black Panther Disney
Captain America: Civil War Disney
| Coco Disney
Deadpool Fox
Deadpool 2 Fox
Despicable Me 2 Universal
Despicable Me 3 Universal
b
l < >

Figure 4.23: Movie titles and studio names

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

1S C W ERORERN continued

To filter this selection, you need to add a second condition to the WHERE command using the Boolean operator AND.
This is shown in the syntax below.

Join syntax with a condition

SELECT tablel.field_name, table2.field _name

FROM tablel, table2

WHERE tablel.foreign_key = table2.primary_key AND condition;

If you would like to show the movie title and studio names of all movies with a score greater than or equal to 90, you
could create the following SQL query.

Join with the condition example

SELECT tblMovies.title, tblStudios.name

FROM tblMovies, tblStudios

WHERE (tblMovies.studio_id = tblStudios.studio_id)
AND (tblMovies.score >= 90)

ORDER BY tblMovies.score;

BB TenSOL Movies - u] X

SELECT thiMovies. tithe, thiStudios.name FROM ThiMovies, thiStudios WHERE (thiMovies. studio_id = thiStudios. studio_id) AND (thiMovies.score >= 90) ORDER BY thiMovies. score;

Execute
L L ~
b S JFox

Fardergy Mamos Degrsry

E.T.: The Extra-Terrestnal Ureversal

Tow Story 3 Dy

The Lovd of the Rings: The Fellowshp of the Ring New Line

The Loed of the Rings: The Retum of the King Pes Linet

Inmde Out Desney

<

Figure 4.24: Filtered list of movie titles and studio names

The previous SQL-statement got too long and can be shortened by introducing aliases for the table names. We have
used aliases for calculated fields using the AS keyword, similarly we can use the AS keyword to set single-letter as
an alias for a table name. Why? Count how many times tbiIMovies was used in the previous SQL statement and you
will see how much shorter the statement will be if tbIMovies gets replaced with the letter M. See the code below.

Note: once a table alias is used it must be applied everywhere in the statement.

using table aliases

SELECT M.title, S.name

FROM tblMovies AS M, tblStudios AS S

WHERE (M.studio_id = S.studio_id) AND (M.score >= 90)
ORDER BY M.score;

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.6 Querying two tables

& Activity4.25

By joining the tbiMovies and tbiStudios table, create queries that show the following information.
4.25.1 The title and date from the tbiMovies table and the name from the tb/Studios table.
4.25.2 The title, score and income from the tbiMovies table and the city and province from the tbiStudios table.

4.25.3 The title, score and income from the tbiMovies table and the name from the tbiStudios table where the score is
below 40.

4.25.4 The title from the tbiMovies table and the name from the tbiStudios table where the city is Los Angeles.

4.25.5 The title, score and income from the tbiMovies table and the name from the tbiStudios table where the income
is above 15000000000.

‘ Activity 4.26 Querying two tables

Write down the following queries and run them using the MoviesSQL App. Make sure that all calculated fields have
field names.

4.26.1 The title, score and movie studio name for all movies.

4.26.2 The title, release year and studio city for all movies.

4.26.3 Al fields from the tbiMovies and tbiStudios tables.

4.26.4 All fields from movies with a score above 90 not made in Hollywood.
4.26.5 All superhero movies made by Disney.

4.26.6 The average score of all movies, grouped by studio name.

4.26.7 Run the CitiesInSA_App.exe, write down queries that will answer the following questions, as well as the
answers to these questions.

a. What is the largest city in Mpumalanga?

b. In which province is the city Allemansvlei?

c. What is the longitude and latitude of Kwazulu-Natal’s capital city?

d. In which province is the city Nkwali and what is the province’s population?

e. What are the capital cities and largest cities of all provinces with a population greater than 6 million
people?

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

UNIT

4.7 Database applications

When creating an application that uses SQL, you should not expect your users to be able to write SQL
queries. Instead, you should create applications that automatically builds the SQL queries based on the
input from your application’s components.

In this unit, you will create an application that builds these queries automatically using data entered in
components.

THE MUSIC SEARCHER APP

For this application, the user interface, database and database connection has already been created. Your
task is to build the SQL queries. Open the project in the Music searcher folder to enter the example code
and complete Activity 4.27.

& Activity427

The user interface is shown below. As the image shows, the user interface contains a grid with a lot of information about
different songs from a “music” table. At the bottom of the user interface you can perform different searches.

@ Music Searcher - O X
Music Searcher
D [artst |abum |song Joenre |year |duration [populanty [loudness [beats_per_mnute | A
> Casual Fear Itself 1 Didr't Mean To hip hop 218.93 40 -11.20 92.20
[| 2 hesoxTops Dmensions Soul Deep bueeyedsodl 1969 146.04 A2 98 121.27
a 3 Sonora Santanera Las Numero 1 De La Sorw Amor De Cabaret salsa 177.48 .34 .69 100.07
(| 4 Adomant Friend Or Foe something Giris 000 rock 1982 233.40 A5 901 19.29
[] siee Muer los Vivos Face the Ashes pow purk 2007 209.61 4 45 129.74
[| & JeffAandshenEaster | Ordinary Day The Moon And I (Ordinat southern gaspel 2%67.7 3 am 192.78
(| 7/Retedr DaGheltoPsychic KeepnIlReal (Ski) breakbeal 114.78 26 17.30 11179
| | 8 TweeterfendyMusc |G & Phonk Drop of Ran post hardcore 189.57 61 -11.64 10143
(] 5 PianetP Project Pink World Pink World rew wave 1984 269.82 .33 -13.50 8664
Artists Album Song Genre Number Field
| | | | = =T |
Seachirtst | SeachAbum | Seachong | SeachGewe | Search Number
Search Al |

4.27.1 The user must enter an artist name in the artist edit box. When the button [Search Artist] is clicked, the SQL
query should return all records for the artist entered.

SQL query: a string in Delphi code
'SELECT * FROM music WHERE artist = "' + sArtist + '"';

NOTE: The double quotation marks around sArtist. This ensures that the value entered is inserted in the SQL
statement as a string so that the test artist = “some value” won'’t give a data type mismatch error. Double
quotation marks are not required if the field in the condition is not a String. For date tests the ‘#" symbols
instead of the double quotes.

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.7 Database applications

‘ Activity 4.27 continued

If the user enters ‘Casual’ and click Search Artist output will be:

B Music Searcher - o x

Foar ltself 10kt Mean To hoho 218.93
The Buidng Otown hohe 25945
Cosul Ibeleve hoho 2831
Truck Deiver Classc Materal hoho 188.06
famnacons Prects hohop 2008 21355
Truck Driver LetMe b 270.78
Truck Oriver Turkey AndDressn hiohop 187.45
Casusl Eaiardts tiohop 203.02

-12.05 85.65
92.57
-5.8% 156.01
TH 2398
-5.66 136.25
~13.17 .mn

Lasbsabs
5

Artists Album Song Genre Humber Fied

[canai | | | [rese i T

[odam || sewchabom | sewchsong | sewrcewe | Sewch tammber |
Seach Al |

SELECT * FROM music WHERE artist = “Casual®

Search Artist event

var
sSqlQuery : String;
sArtist: String;

Begin
sArtist := edtArtist.Text;
sSqlQuery := 'SELECT * FROM music WHERE artist = "' + sArtist + '"';

1b1SqlQuery.Caption := sSqlQuery;
dmoMusic.qryMusic.SQL.Text := sSqlQuery;
dmoMusic.qryMusic.active := true;

end;

4.27.2 When the button [Search Album] is clicked a SQL query is needed to search for the any alboum containing the

word entered. Let sAlbum be the variable to hold the user input. Remember the LIKE operator and wildcard ‘%’
must be used.

SQL query: a string in Delphi code
“SELECT * FROM music WHERE album LIKE "%' + sAlbum + '%"';

) Music Searcher i o x
Music Searcher
st abon -~
53 LostBoyz Love_Peace & Nappines Cortan Thinge We Do gangeter rap 1957 26679 A1 -11.04 0.2
65 Taras 1 Wil Love Agan 1 will Love Agan (1's Ok trance 200.25 19 -5.88 127.97
78 Nadne Renee OCass of Love Next Time freestyle 240,42 4 480 167.92
84 Glen Campbel Unconditonal Love I'm Gone This Time country rock % M -ILH 137.29
85 S Whitman Country Lovers. Vol. 3 Indan Love Call folc-pop 1990 19592 9 -9 9.9
17 Norrie Paramor 1In London_ In Love Dearly Beloved easy Istering 163.50 25 2589 »nn
214 Busdrver RoadiOvercoat (Bocdy Paw On The) kil sitermatve hphop | 2007 192.18 35 4% 155.04
266 Carl Doy with NISO Music Por Christmas Love The First hoel progressive house 158,56 29 165 465
272 Bert Kaempfert And His | Love That Bert Kaempfer Just As Much AsEver orchestra 1B1% A7 -3 105.18 i
Artists Album Song Genre Humber Field
| uove | | [rear i [ST
l“_.._......‘. —— ’ m | | ”’
Sawch A1 |
SELECT * FROM music WHERE album LIKE "%love%"

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

‘ Activity 4.27 continued

Search Album event

var
sSqlQuery : String;
sAlbum : String;

begin
sAlbum := edtAlbum.Text;
sSqlQuery := 'SELECT * FROM music WHERE album LIKE "%' + sAlbum +

%"
1b1SqlQuery.Caption := sSqlQuery;
dmoMusic.qryMusic.SQL.Text := sSqlQuery;
dmoMusic.qryMusic.Active := True;

end;

4.27.3 When the button [Search Number] is clicked a SQL query must be built that includes the field selected, the
relation operator selected and the value entered in the edit. Let sField, sSymbol and sValue hold the data
entered by the user then the SQL statement will be:

SQL query: a string in Delphi code
"SELECT * FROM music WHERE '+ sField + sSymbol + sValue;

If the user is searching for songs released in the year 2010 the output will be:

& Music Searcher - =] b s
.
Music Searcher
Jabum leerg fgerve Jyser Jarton Tpopulary Joucness foosts por s | 4
d < The Vitalzed Shel black metal 010 24074 B 488 135.54
186 Sutana Sevane O S04 406 Que volven Para Miladoro oata 010 350.72 200 <1304 152.01
201 Pascal Sangls Une pette pause Une petite pause french pop 010 M315 0 1AM 91
466 | Sater Harel Release Wals And Carnonbals (1 post-grunge 010 19537 S 4.4 140.26
7 Ad Te Clamamus Exsvies black metal 00 B A X% 90.66
523 Cancer Bals Sabotage Sabotage southern rock 010 171 53 -4.83 8501
1325 Boondox South Of Hel hothing To Lose rag rock 200 26010] 5.85 200.00
1M9 Jemes NewtonHowerd Nanny McPhee & The B The Burp Hewrd Round Tinstrumentalpop 2010 130.52 A5 4.52 .97
1428 Jack Johnson You And Your Heart You And Your Heart rock W00 196.21 &8 7.05 107.04 4
Artists Album Song Genre Humber Fiekd
f I | I frese 2 ST | ST
wow | _smoren | swous | swocen | [v |
Search A1 |

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.7 Database applications

‘ Activity 4.27 continued

Search Number event
var
sSqlQuery : String;
sField, sSymbol, sValue: String;

Begin

case cbxField.ItemIndex of

0: sField := 'year';

1: sField := 'duration';

2: sField := 'popularity';

3: sField := 'loudness';

4: sField := 'beats_per_minute';
end;
case cbxSymbol.ItemIndex of

0: sSymbol := ' = "';

1: sSymbol := "' > ';

2: sSymbol := ' < ';
end;
sValue := edtNumber.Text;
sSqlQuery := 'SELECT * FROM music WHERE '+ sField + sSymbol + sValue;

1b1SqlQuery.Caption := sSqlQuery;
dmoMusic.qryMusic.SQL.Text := sSqlQuery;

DmoMusic.qryMusic.active := true;
end;
¢

Did you know

The wildcard characters in Delphi are the percentage symbol (%) for zero
to many characters, and the underscore symbol (_) for a single character.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

& Activity4.28

4.28.1 Provide code for the [Search Song] and [Search Genre] buttons to complete the Music Searcher App.
Use wild cards in both so that any song or any genre with the word entered can be found.

4.28.2 Provide code for the [Search all] button as follows:

e (reate a query that always searches for all fields (using the AND operator).

e Place each of the values from the text boxes into the search query.

e [fatextbox does not contain a value, replace this value with a wildcard character that will match all
records.

Congratulations, you just created an application that allows users to search through thousands of songs
with the click of a button!

‘ Activity 4.29 Using data from components

Open the application saved in your Cities of South Africa folder. Create the following events for this application:

4.29.1 Anevent to insert new cities to your cities table.
4.29.2 An event to update the population of your provinces table.
4.29.3 An event to delete all cities meeting specific criteria from your cities table.
4.29.4 Using this application, complete the following tasks:
a. Add any city of your choice to the database.
b. Update the population of Gauteng to 14 717 000 (the 2018 estimate).
c. Delete the city with the /D of 6800.

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.7 Database applications

(O BRI 0\ WA R IINAS Chapter 4: Databases and SQL

QUESTION 1

1.1 The following database called students shows the details of a number of students attending a university, as
well as the students’ average for their course’s subjects. Use this table to answer the questions that follow.

STUDENT_NUMBER NAME SURNAME ~ COURSE AVERAGE
8621 Anton Potgieter Electrical Engineering 62
8893 Kimberly | Burton Information Technology 74
9672 Ayanda Bisepe Psychology 57
7896 Erika van Vuuren Electrical Engineering 82
2033 David Mtsweni Chemical Engineering 74
8877 Martin Governor Veterinary Sciences 92
6696 Blessing Sisulu Mathematics 42
Write a SQL query to:

a. View all the information, sorted from the lowest student number to the highest student number.
b. Show a list of courses without duplicates.

c¢. Show the name, surname and average of all the students that have the character ‘a’ in either their
name or surname.

1.2 The following database called Appliances shows the products sold at an appliance and electronics store.
It shows the price for these products in Rands and how many units of the product are stored in the

store’s warehouse.
PRODUCT PRICE TOTAL_UNITS
Kettle 95.95 116
DVD Player 159.00 563
Television 4999.00 250
Fridge 4850.50 189
Washing machine 2655.99 374
Dish washer 2910.00 116
Sound system 1999.90 123

Write a SQL query to:
a. view all the products that have a price above R2000?.
b. show the total value of all the stock.

QUESTION 2

| For this application, open the project saved in the 04 — Question 2. Save your project.

The Petersen Group CC wants to use software to assist their staff in answering queries from management. In the
development of the software, a database called BandB.mdb has been created. The program is incomplete. Your
task will be to complete the program that will be used to answer queries from management.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

BRIy P INAS Chapter 4: Databases and SQL continued

2.1 Open the data module and ensure that all the database components have been connected correctly. You

should see the following user interface.
@ Peterson Group - n 4
Clenthio Tidle Sumame Fhame IDNumber SA MNatonolty ~
b ilw Fevera Guiseppe 1712183567065 False Portugese L
2 Mrs Honeywel Lucy 5907234676012 True SA
3 Ms Mendes IsaaC 6708139075176 True 3SA Mr Ferrera
4 M Khoro Dantu 7706161545342 True SA
5 Mre Freubch Ina 8107168893475 Falce German
6 M Kowalsd Joachim 7407189162348 False Polsh Englsh
7 Ms Krzyalos Stavro TH0517 2654765 Faise Greek
3 Ms VonBreun Ger e 5608237896212 Fdse Geyman Cost
9 Mr Fouche Jean-Claude 7805263478653 Falee French
10 Ms Raker Jean SA12130067143 False Englich
11 Mr Griffiths Dattyd 2311078237876 Faise \Weish Descount
12 Mrs Van Rheede Roxanne 6312054763457 Faise Dutch
13 Ms Nguni Priscila 7609248768934 True SA
14 M Yamimoto Ishigury 7907186427868 False Japanese Felesyer
15 M Saint-Yores Yves 6610278547278 False French
15 M Smythe Andrew 7410287656786 False English
17 M Johnstone Paul 0002027876006 Folse Cnglish
18 Me Rodriguez Laura 8211263788743 Falce Spanich
19 Mr Bekder Hendrik 5607187367892 True SA
20 Ms Kowaisk Niotha BOLLZI006 N3 Faise Polsh
21 M Bekker Buis 7710145678083 False German &
Complete the SQL statements for each button as indicated by questions 2.2 to 2.7 that follow:

2.2 Complete the code in the [List] button by formulating an SQL statement to display all the fields from
ibiClients table sorted by Surname and then by FName (first name).

2.3 Complete the code in the [Mr Ferreira] button by creating a query that will calculate the total amount owed
by Mr Ferreira (ClientNo field equal to 1). This is a calculated answer. The name of the calculated field must
be Total Due and the result must be formatted to display the amount with TWO decimal places.

2.4 All the bookings for the English football fans have been cancelled. Complete the code for the [English]
button by creating a query to delete all English clients (Nationality field equal to English).

2.5 The group uses a 25% markup when calculating the selling price. Using the tb/Orders table, complete the
code for the [Cost] button by creating a query that will list the Date, Category, SellingPrice and Cost (selling
price minus the 25% mark-up) for each item ordered by Guiseppe Ferreira (ClientNo field equal to 1).

Cost is a calculated field and must be named Cost.
Use the following formula to calculate the cost; Cost = Selling price x 0.75

2.6 The Petersen Group has decided that they want to support all tourists by giving them a R5 discount on the
selling price of every item they have ordered if the item’s selling price is R30 or more. Complete the code for
the [Discount] button by writing a query that will reduce the selling price of the relevant items by R5 in the
tblOrders table.

2.7 Complete the code for the [Faltemeyer] button by writing a query that will add the following client data to the
tbiClients table:

Mr Harald Faltemeyer, ID 7407185683074, Swedish
NB: IDNumber field only accepts strings, while the SA field only accepts boolean values.

QUESTION 3

The city of Coruscant has called for the development of an application to keep track of drivers that violate the city’s

speed limits.

The TrafficViolations.mdb database contains two tables called tb/Owners and tblViolations.

TERM 3 | CHAPTER 4 DATABASES AND SQL | UNIT 4.7 Database applications

O\ BT R0\ WA e IVINES Chapter 4: Databases and SQL continued

The tblOwners table has the following fields:

FIELD DATATYPE DESCRIPTION

OwnerID (PK) Text An identification code unique to each owner.

Surname Text Contains an owner’s surname.

FirstName Text Contains an owner’s first name.

DoB Text Contains an owner’s date of birth “YYYY/MM/DD’.
Gender Text Describes an owner’s gender as male (M) or female (F).

The tblViolations table is structured with the following fields:

FIELD DATA TYPE DESCRIPTION

ViolationID (PK) Auto number Unique ID for a speeding violation.

Location Text Location where a speeding violation was captured.
SpeedArea Integer The official speed limit for an area.
SpeedCaptured Integer The speed captured for a speeding violation.
ViolationDate Text Indicates the date of the speeding violation.
ViolationTime Text Indicates the time of the speeding violation.
OwnerID (FK) Text Identifies the owner of the speeding violation.

The OwnerlD field has been used to link the two tables. The dates and times captured in the database are stored
as strings.

@ Teatfic violations = o X
Traffic violations
Queston 3.1 QwnerlD Sumame Frstame Dob Gender »
0129358019 whee Eraniin 1991/10/23 "
Queston 3.2 1103914904 Orange Justine 1998/11/30 F
2948918450 Purple Perte 1994/01/29 H
9023486702 sue unda 1993/01/31 F
N3 236262323 Yelow Bryan 1988/10/27 M
3948893468 Black Haward 1984/04/15 “
Question 3.4 3587390875 Grey Rosaine 1999/09/03 F
b 2352362362 Green Robert 1992/09/19 M
Qusetion 3.5 v

Complete SQL the code to answer QUESTION 3.1. to QUESTION 3.5.
3.1 Allfields must be displayed for all records in the tb/Owners table, sorted from Z to A on surname.

3.2 Concatenate the following in a field called Owner for all records in the tb/Owners table that were born in or
after the year 1993 (also display the date of birth);
e Surname followed by a comma and a space.
e The first letter of the owner name followed by a dot (.).

3.3 Using the Violations table, display the average speed recorded for each location where speeding violations were
captured in a new field called AverageSpeed. The averages need to be rounded off to ONE decimal place.

3.4 Use both tables to display the surname of each owner and the number of traffic violations belonging to each
owner in a field called ViolationCount.

3.5 Two records in the thiOwners table have been captured by error and need to be removed from the database.
Remove the records identified by the keys (OwneriD) 2987593875 and 9867398476 from the thiOwners table.

INFORMATION TECHNOLOGY | GRADE 12 | Practical Book

ANNEXURE Shneiderman’s ‘Eight Golden Rules of
A Interface Design’

These rules were obtained from the text Designing the User Interface by Ben Shneiderman.
Shneiderman proposed this collection of principles that are derived heuristically from experience and
applicable in most interactive systems after being properly refined, extended, and interpreted.

To improve the usability of an application it is important to have a well designed interface.

Shneiderman’s ‘Eight Golden Rules of Interface Design’ are a guide to good interaction design.

1. STRIVE FOR CONSISTENCY.

Consistent sequences of actions should be required in similar situations; identical terminology should be
used in prompts, menus, and help screens; and consistent commands should be employed throughout.

2. ENABLE FREQUENT USERS TO USE SHORTCUTS.

As the frequency of use increases, so do the user’s desires to reduce the number of interactions and to
increase the pace of interaction. Abbreviations, function keys, hidden commands, and macro facilities are
very helpful to an expert user.

3. OFFER INFORMATIVE FEEDBACK.

For every operator action, there should be some system feedback. For frequent and minor actions, the
response can be modest, while for infrequent and major actions, the response should be more substantial.

4. DESIGN DIALOG TO YIELD CLOSURE.

Sequences of actions should be organized into groups with a beginning, middle, and end. The informative
feedback at the completion of a group of actions gives the operators the satisfaction of accomplishment,
a sense of relief, the signal to drop contingency plans and options from their minds, and an indication that
the way is clear to prepare for the next group of actions.

5. OFFER SIMPLE ERROR HANDLING.

As much as possible, design the system so the user cannot make a serious error. If an error is made, the
system should be able to detect the error and offer simple, comprehensible mechanisms for handling
the error.

6. PERMIT EASY REVERSAL OF ACTIONS.

This feature relieves anxiety, since the user knows that errors can be undone; it thus encourages exploration
of unfamiliar options. The units of reversibility may be a single action, a data entry, or a complete group
of actions.

7. SUPPORT INTERNAL LOCUS OF CONTROL.

Experienced operators strongly desire the sense that they are in charge of the system and that the system
responds to their actions. Design the system to make users the initiators of actions rather than
the responders.

8. REDUCE SHORTTERM MEMORY LOAD.

The limitation of human information processing in shortterm memory requires that displays be kept simple,
multiple page displays be consolidated, windowmotion frequency be reduced, and sufficient training time
be allotted for codes, mnemonics, and sequences of actions.

[Source: http://www.cs.utexas.edu/users/almstrum/cs370/elvisino/rules.htmi, accessed 13 June 2019]

ANNEXURE A | Shneiderman’s ‘Eight Golden Rules of Interface Design” [BER]

ANNEXURE
B 10 usability heuristics for user interface design

By Jakob Nielsen on January 1, 1995

Summary: Jakob Nielsen’s 10 general principles for interaction design. They are called ‘heuristics’ because
they are broad rules of thumb and not specific usability uidelines.

VISIBILITY OF SYSTEM STATUS

The system should always keep users informed about what is going on, through appropriate feedback
within reasonable time.

MATCH BETWEEN SYSTEM AND THE REAL WORLD

The system should speak the users’ language, with words, phrases and concepts familiar to the user,
rather than system-oriented terms. Follow real-world conventions, making information appear in a natural
and logical order.

USER CONTROL AND FREEDOM

Users often choose system functions by mistake and will need a clearly marked ‘emergency exit’ to leave
the unwanted state without having to go through an extended dialogue. Support undo and redo.

CONSISTENCY AND STANDARDS

Users should not have to wonder whether different words, situations, or actions mean the same thing.
Follow platform conventions.

ERROR PREVENTION

Even better than good error messages is a careful design which prevents a problem from occurring in the
first place. Either eliminate error-prone conditions or check for them and present users with a confirmation
option before they commit to the action.

(Read full article on preventing user errors.)

RECOGNITION RATHER THAN RECALL
Minimize the user’'s memory load by making objects, actions, and options visible. The user should not
have to remember information from one part of the dialogue to another. Instructions for use of the system

should be visible or easily retrievable whenever appropriate. (Read full article on recognition vs. recall in
UX.)

FLEXIBILITY AND EFFICIENCY OF USE

Accelerators — unseen by the novice user — may often speed up the interaction for the expert user such
that the system can cater to both inexperienced and experienced users. Allow users to tailor frequent
actions.

AESTHETIC AND MINIMALIST DESIGN

Dialogues should not contain information which is irrelevant or rarely needed. Every extra unit of information
in a dialogue competes with the relevant units of information and diminishes their relative visibility.

HELP USERS RECOGNIZE, DIAGNOSE, AND RECOVER FROM ERRORS
Error messages should be expressed in plain language (no codes), precisely indicate the problem, and
constructively suggest a solution.

INFORMATION TECHNOLOGY | GRADE 10 | Practical Book

HELP AND DOCUMENTATION

Even though it is better if the system can be used without documentation, it may
be necessary to provide help and documentation. Any such information should
be easy to search, focused on the user’s task, list concrete steps to be carried
out, and not be too large.

| originally developed the heuristics for heuristic evaluation in collaboration with
Rolf Molich in 1990 [Molich and Nielsen 1990; Nielsen and Molich 1990]. | since
refined the heuristics based on a factor analysis of 249 usability problems [Nielsen
19944] to derive a set of heuristics with maximum explanatory power, resulting in
this revised set of heuristics [Nielsen 1994b].

REFERENCES

Molich, R., and Nielsen, J. (1990). Improving a human-computer dialogue,
Communications of the ACM 33, 3 (March), 338-348.

Nielsen, J., and Molich, R. (1990). Heuristic evaluation of user interfaces, Proc.
ACM CHI'90 Conf. (Seattle, WA, 1-5 April), 249-256.

Nielsen, J. (1994a). Enhancing the explanatory power of usability heuristics. Proc.
ACM CHI'94 Conf. (Boston, MA, April 24-28), 152-158.

Nielsen, J. (1994b). Heuristic evaluation. In Nielsen, J., and Mack, R.L. (Eds.),
Usability Inspection Methods, John Wiley Sons, New York, NY.

Note: Many people ask if they can use these heuristics in their own work. Yes, but
please credit Jakob Nielsen and provide the address for this page [nngroup.com/
articles/ten-usability-heuristics] or cite the paper above [Nielsen 1994a]. If you
want to print copies of this page or reproduce the content online, however, please
see the Copyright link below for details.

(Copyright) 2005 by Jakob Nielsen. ISSN 1548-5552

(Copyright) 1998-2017 Nielsen Norman Group, All Rights Reserved.

Did you know

For more information on
interface design, you can
visit these websites:

Bruce “Tog’ Tognazzini’s list
of basic principles for
interface design (https://
asktog.com/atc/principles-
of-interaction-design/). The
list is slightly too long for
heuristic evaluation but
serves as a useful
checklist.

Examples of the 10
heuristics in Web
applications (http://
designingwebinterfaces.
com/6-tips-for-a-great-
flex-ux-part-5).

The 10 usability heuristics
applied to everyday life (just
for fun) (https://www.
zenhaiku.com/archives/
usability_applied_to_life.
html).

Full set of 2,397 usability
guidelines (across multiple
reports) (https://www.
nngroup.com/reports/).

ANNEXURE B | 10 usability heuristics for user interface design [RKY

ANNEXURE
C Using SQL in Delphi

So far, you have only used SQL in Microsoft Access. In this Annexure, you will learn how to use SQL in
Delphi. To do this, you will create a simple database application with a single textbox that you can use to
enter SQL commands. Once an SQL command is entered and the Filter button is pressed, the grid will
show the filtered database.

To create this application, you will need to use the TADOQuery component which can be found from the
dbGo list in the Tool Palette. This component, together with the standard TADOConnection component
will be added to a data module, from where they can be used in your application.

Tool Falette X

& -0
@ Indy Misc ~
(&) Indy SASL
4 WebServices
= dbGo
%t TADOConnection
's TADOCummend
2 TADODataSet
= 1ADUIable
1 TADOStoredProc
%1 TRDSCennection

TADOQuery component in a doGo list
Once the database connection has been set up and the TADOQuery component has been added to your

data module, you can use the query component to create and SQL query. This is done by adding a string
with the query to the SQL. Text property, as will be shown in the examples below.

Example C Creating the SQL connection in Delphi

To create the SQL connection in Delphi:

1. Create a new project and save it in the folder Best Movie Statistics.
2. Create the following user interface.

@ Best Movie Statistics - o »
Best Movie Statistics
SaL

Query

3. Right click on the executable project file in the Project Manager, select Add New and click on the Other option.
This will open the New ltems window.

LG INFORMATION TECHNOLOGY | GRADE 10 | Practical Book

Example C Creating the SQL connection in Delphi continued

4. Select Data Module and click OK.

@ New ltems x

~ [Delph Projacts |0 search i
£ Delphi Files =
71 Inhentable tems & % % .

{1 Web Documents

Component Data Module FireMonkey FireMonkey
Frame Maetropolis ..

™ =

MSBuild Multi-Device Thread Unit
Targuts File Form Objuct
[=

5. Save the data module as movies_d in the project folder.
6. Change the data module’s name to dmoMovies.

7. Add a TADOConnection component, a TADOQuery component and a TDataSource component to the
data module.

8. Rename the components to conMovies, qryMovies and asMovies.

9. Select conMovies and click on the three dots button next to its ConnectionString property.
10. Click on the Build button.

11. Select the Microsoft Jet 4.0 OLE DB Provider and click Next.

2| Data Link Propertics X

Provider Connection Advanesd Al
Specdy the followng 1o connect 1o Access data:
1. Select or enter a database name:
[ractical - Siefan\11 - Best Movie Satitics\Movies mét [
2. Enter nformation to log on to the database:

B Bank paceword] Alow gaving pasewerd

Test Cornection

oK Cancel Help

12. Click on the three dots button, select the Movies.mdb file and click Open.
13. Remove the ‘path’ from the connection string to be able to open the application on other computers
14. Test the connection, then click OK. Click OK again.

15. Change the LoginPrompt property of the database connection to False, and the Connected property to True.
16. Select gryMovies and set its Connection property to conMovies.

17. Select asMovies and set its DataSet property to gryMovies. This connects the data source to your movies query.
18. Add movies_d'to the uses list at the top of your main form.
19. Save and test your application. Your application should now open without a problem.

Congratulations on successfully creating the SQL query connection! As this example shows, creating the connection
is very similar to using a TADOTable component to connect to a database. However, as the next example will
show, the query component is more flexible as it allows you to enter different SQL queries.

ANNEXURE C | Using SQL in Delphi |32

160

Example C Using SQL in Delphi

To create the SQL connection in Delphi:
1. Create a new project and save it in the folder Best Movie Statistics.
2. Create the following user interface.

) Best Movie Statistics - (m] S

Best Movie Statistics

3. Right click on the executable project file in the Project Manager,
select Add New and click on the Other option. This will open the

New ltems window. Did you know
4. Inyour event, set the Active property of your gryMovies Remember, whenever you access
component to True. a component from a different

form or data module, you always
start by first accessing the form
or data module.

5. Save and test your application by entering a valid SQL query in
the text box and the pressing the [Query] button. You should see
that data appear in your grid component.

€ Best Movie Statistics - o x
- - -
Best Movie Statistics
] title studioid income release .. score genre
1 2012 1.00 1077580.. 13/11/20.. 49.00 Action i
£ Alice in... 200 143500, 05/03/20.. 5300 Adventure
3 Avatar 300 3903200.. 1812/20.. 83.00 Science f..
4 Avengers.. 200 1967560.. 01/05/20.. 66.00 Superhero
5 Avengers... 200 2865660.. 16/02/20.. 68.00 Superherc
6 Batman... 400 1223040... 25/03/20... 4400 Superhero
7 Beautya.. 200 1768900.. 17/03/20... 6500 Musical
0 Dlack Pa... 2.00 1085660... 27/04/20... 88.00 Superhero
9 Captain... 200 1614620... 06/05/20... 7500 Superhero v
sqL
SELECT * FROM movies; [vy |

Well done, you now have a Delphi application that can create run SQL queries for you.

While this application is very straightforward, it shows how SQL queries can be run in Delphi. A later unit
will show a more complex example of a Delphi application using SQL.

INFORMATION TECHNOLOGY | GRADE 10 | Practical Book

ANNEXURE 7
D Component names and description 74

COMPONENT NAME PREFIX ICON BRIEF DESCRIPTION

Standard Group

Button btn Most used to activate an action.

Label 1bl =1 | Commonly used to display information.

Edit edt [Used for single line input, but also displays information.
Memo mem * Multiple line display organized in lines.

Panel pnl [A container hosting other components.

List Box 1st E:] Multiple line display. Able to display left aligned columns.
Radio Button rad ® Toggles selection.

Radio Group rgp) Grouped Radio buttons — only one selectable.

Combo Box cmb =] Multiple line capturing. Selection of item through drop-down.
Check Box chk X Toggles selection.

Main Menu mnu F Main menu with submenus. Activates actions.

BitButton btt Button with icon - used to activate actions.

String Grid sgd] Two dimensional grid with cells to capture text.

Image img n Component to host pictures (bitmaps, jpgs).

Shape shp 5" * Basic shape like circle, rectangle or ellipse.

Rich Edit red Memo with RTF capabilities.

Page Control pgc @ Special page component hosting tab sheets.

Progress Bar prb Wi | "Rectangle capable indicating progress via growing colour bar.
Status Bar stb m— | *Asub dividable bar at the bottom of form indicating status.

System Group

Timer tmr & * Count down timer — initializing action as count-down reaches 0.

ANNEXURE D | Component names and description

COMPONENT NAME PREFIX ICON BRIEF DESCRIPTION

Samples Group

Spin Edit sed [| Integer input component with pre-set range to select from.
Calendar * Galendar with Month layout for selecting days.

Data Access Group

DataSource Component to connect data-aware component with dataset.

dbGo Group

ADOConnection gfé Component to connect with the database (Access).
ADQTable tbl = | Dataset component to reflect the contents of a single table.
ADOQuery Ez Dataset component to reflect a result.

Data Controls Group

DBGrid m Data-aware component reflecting the contents of a dataset.
DBNavigator dbn) * Data-aware component interacting with a dataset.
DBText dbt @ * Data-aware edit box reflecting a field value from a record.
Form frm = | The initial Form — not categorised under any group.

{72 (NFORMATION TECHNOLOGY | GRADE 10 | Practical Book

ANNEXURE
E The ASCII table

In 1963, the American Standards Association published a table which linked 127
different letters and symbols to numbers. This table was called the ASCII table,
which is short for the American Standard Code for Information Interchange.

With ASCII, the first 32 characters in the table are programming characters that
cannot be shown on the screen. These include characters like a carriage return
character (which shows where a new line should start) and a horizontal tab
character which added some horizontal space. The full list of these 32
programming characters is given in the table below.

Table 14.1: The programming characters

BEEEAS:I{_ CHARACTER NAME EEE\;/:EA?FI{_ CHARACTER NAME

0 NUL Null 16 DLE Data Link Escape

1 SOH Start of Heading 17 DC1 Device Control 1

2 STX Start of Text 18 DC2 Device Control 2

3 ETX End of Text 19 DC3 Device Control 3

4 EOT End of Transmission 20 DC4 Device Control 4

5 ENQ Enquiry 21 NAK Negative Acknowledgement
6 ACK Acknowledgement 22 SYN Synchronous Idle

7 BEL Bell 23 ETB End of Transmission Block
8 BS Backspace 24 CAN Cancel

9 HT Horizontal Tab 25 EM End of Medium

10 LF Line Feed 26 SUB Substitute

11 VT Vertical Tab 27 ESC Escape

12 FF Form Feed 28 FS File Separator

13 CR Carriage Return 29 GS Group Separator

14 SO Shift Out 30 RS Record Separator

15 S Shift In 31 us Unit Separator

ANNEXURE E | The ASClI fable KK}

164

The next 95 characters are all visible characters that you can see on the screen.

Table 14.2: Visible characters

DECIMAL CHARACTER DECIMAL CHARACTER DECIMAL CHARACTER
32 61 = 90 VA

DECIMAL CHARACTER
w

SPACE 119
33 ! 62 > 91 120 X
34 “ 63 ? 92 121 y
35 # 64 @ 93 122 z
36 $ 65 A 94 123 {
37 % 66 B 95 124 |
38 & 67 c 96 125 |
39 ‘ 68 D 97 126 ~
40 (69 E 98
41) 70 F 99
42 * 71 G 100
43 + 72 H 101
44 , 73 | 102
45 74 J 103
46 75 K 104
47 / 76 L 105
48 0 77 M 106
49 1 78 N 107
50 2 79 0 108
51 3 80 P 109
52 4 81 Q 110
53 5 82 R 111
54 6 83 S 112
55 7 84 T 113
56 8 85 U 114
57 9 86 v 115
58 87 w 116
59 ; 88 X 117
60 < 89 Y 118

The final 127th character is the DELETE character, which is used when something needs to be removed

or deleted.

INFORMATION TECHNOLOGY | GRADE 10 | Practical Book

ANNEXURE
F Enrichment

LISTS

Lists work in a similar way to arrays. They allow you to store a large number of elements that can be
accessed using an index and which must all be of the same type. However, lists differ from arrays in three
important ways:

e The size of a list is not fixed.

e Lists contain useful, built-in methods that allow you to manipulate the list and the data in the list.

e The index of the first list element is always 0.

Lists are created in three steps:

e Add the “Generics.Collections” to your application’s “
e Define the list in the variables section.

e Create the list in an event.

uses” section.

Once the “Generics.Collections” library has been added to your project, you can declare your variable in
the variable section as follows.

var
1Name : TList<Type>;

Finally, the list needs to be created in an event. This is done with the following code:

1Name := TList<Type>.Create;

While it takes a bit of effort to define the list, once it is done you can take advantage of the many advanced
methods that are included in the TList object. These methods include:

FUNCTION DESCRIPTION

Tlist. Add(ltem); Adds an element to the end of the list.
Tlist.Delete(Index); Deletes the element at the index location.
TList.Clear; Deletes all items from the list.

TList.Insert(Index, Item); | Inserts an item at the index location, increasing the index of
all items following this location.

Tlist{Index] := Item; Replaces the value of the element at the index location.

TList.Sort; Sorts the items in the list in ascending order using an
efficient QuickSort algorithm.

TList.IndexOf(Item); Searches for the item entered and returns its index.

You have already learned about things such as Double, String, Array, and List. But what if you are dealing
with a group of data types that form a single entity, that is, different but related data types that need to be
grouped together to represent an entity — something similar to an ID card or an account. In this case it
would be useful to consider the data as a special type, something that not only contains the data but also
the functions that may be applied to it. We refer to this as encapsulation.

The TList type in Delphi is an example of this type of data. It contains all the essential features to hold items
in a list as well as the functions to manage the list. We call the entity TList a class, and instances (objects)

ANNEXURE F | Enrichment [REEE)

166

of this class will each have its own data plus the given functions to manage the data. (See the simpilified
Tlist API'in Appendix A.)

In the code snippet below, constructors are used to create a list object and button object.

Constructor example
listNames := TList<String>.Create;
btnDynamic := TButton.Create(Self);

In the first line, the Create function is used to create a TList object with the
type String and assign it to the TList object “listNames”. In the second line,
a TButton object is created and assigned to the object name “btnDynamic”.
In this example, the constructor function requires the “Self” parameter. We
refer to this method of abstracting the essential common features of an
entity to create a data type, as Object Oriented Programming (OOP). In
this way, the data structure becomes a class for creating objects (entities)
that include both data and functions (code). Programmers can use this to
create instances of the entity much like using the TList object to create a
number of lists with in your program.

In the next example we will demonstrate how useful it is to have a list of
objects that can be filtered to get information.

INFORMATION TECHNOLOGY | GRADE 10 | Practical Book

@

New words

data type — a particular
kind of data item, as
defined by the value it can
take, the programming
language used, or the
operations that can be
performed on it.

abstracting — to create an
object and assign it to an
object name

m Adding data to an array

Alternative: Using TStringList to extract data form a delimited string

You can use a 7StringList to extract the parts between the delimiters from a delimited string. In this example we do
this in the inner loop. You can read the data in a loop in exactly the same way as the example above. However
sometimes when you have a small file and you may want to use the method below, it puts the complete file into a
TStringListyou can then use a second TStringList to remove the delimiters as illustrated.

In this example we do not need to specify the delimiter as it defaults to ;.

Var
sData: String;
i, j: Integer;
inputLines: TStringlList;
onelLine: TStringlList;
// aData : Array[l..5, 1..7] of Integer; (Global variable)

begin
inputLines := TStringlList.Create;
onelLine := TStringlList.Create;

inputLines.LoadFromFile('marks.csv'); //put file into inputLines
For i := 1 To 5 Do
Begin
onelLine.delimitedText := inputList[i]; // default delimiter is ','
For j := 1 To 7 Do
aDatal[i,j] := strtoint(oneLine[]j-1]1);//array 1-7 stringlist 0-6
End;

Displaying the array data
CSVIntoArray;
for i := 1 to Length(aData) do
begin
sOutput :=
for j := 1 to Length(abData[l]) do
sOutput := sOutput + IntToStr(aDatal[i, jl) + #09;
1bxResults.Items.Add(sOutput);
end;

This code loops through and creates rows of data separated by a tab space character. Once a single row has been
saved in the sOutput variable, it is added to the listbox before a new row is started.

Take note, since you are looping through the rows of data, you need to place the row variable (‘i) in the outer-loop
and the column variable (j”) in the inner-loop.

ANNEXURE F | Enrichment

167

Did you know

Many of the James Bond
films, including Casino
Royale, are set at the
Monte Carlo Casino.

For this example, you need
to build a Monte Carlo
simulator that will analyse
the probabilities in
Blackjack. Specifically, you
want to know how often
someone will pick up one
of the following
combinations of cards:

e Anace and a jack
(called Blackjack).

e Two cards with the
same number.

e Two cards with a
combined value of
exactly 21.

e Two cards with a
combined value larger
than 16 and smaller
than 21.

e Two cards with a
combined value of
exactly 16.

e Two cards with a
combined value of
under 16.

The value of cards is equal
to the number on the card
(so a two of hearts has a
value of 2), except for the
king, queen and jack which
have a value of 10, and an
ace which has a value

of 11.

m Monte Carlo simulator

A Monte Carlo simulation is a mathematical tool used to determine how likely certain
outcomes are in uncertain situations. Rather than trying to use complex mathematics to
calculate an exact probability, mathematicians create a computer simulation with all the
relevant variables and then run hundreds of thousands of tests, recording the result of
each test. After these tests have been run, the mathematicians can look at the results to
see how often each outcome occurred.

The Monte Carlo simulation is named after the suburb Monte Carlo in the city of
Monaco, which is famous for having one of the most prestigious casinos in the world.
The name Monte Carlo was chosen because Monte Carlo simulations are great at
analysing gambling probabilities and odds.

Figure 14.2: The Monte Carlo Casino in Monaco (photo by Bohyunlee)

In Blackjack, players with a hand value larger than 16 are likely to win, while players with
a hand value less than 16 are likely to lose (unless both cards have the same valug).

To create the Monte Carlo simulator, you will need to:

1.

o

Create a user interface.

2. Create a virtual deck of cards.
3.
4. Select two random cards from the deck (without being able to select the same

Create a loop that will run the simulations a user-determined number of times.

card twice).
Calculate the combined value of the cards.

6. Record the category of result (blackjack, smaller than 16, and so forth).

7. Display the results.

ICEI INFORMATION TECHNOLOGY | GRADE 10 | Practical Book

m Monte Carlo simulator continued

Open the project in the F1 — Monte Carlo simulator folder and add code as described in
the solution below:

Solution

To create this program, you needed to complete a number of tasks. For each of these

tasks, there is more than one possible solution, so the code below will simply show one

way to create the Monte Carlo simulator.

e The first step is to create the user interface.

e The user interface below simply shows the different criteria as well as the number
of draws that matched these criteria.

&) Monte Carlo simulations - o %
Total games
0
Exactly 21 Above 16 Exactly 16 Below 16
0 0 0 0
Blackjack Same number
0 0
Number of games: [| | Run Simulati |

e (reate a deck of cards.
e |n this solution, a list is used to create a deck of cards since the list functions could
be useful to add or delete cards from the list. However, an array can also be used.

Creating the deck of cards
1Cards := TList<Integer>.Create;
for i := 1 to 52 do
begin
iCardValue := i mod 13;
if iCardValue = 0 then
iCardValue := 13;
1Cards.Add(iCardValue)
end;

e The FOR-loop runs 52 times, once for each card in the deck. By calculating the
remainder of i mod 13, the loop ensures that all the values are between 1 to 13
(ace to king). These values are then added to the iCards list.

ANNEXURE F | Enrichment [REI%

m Monte Carlo simulator continued

INTRODUCTION TO THE
MONTE CARLO e Create the loop that will run a specific number of times. This loop is shown below.
SIMULATION
Game loop
iSimulations := StrTolInt(edtNumberOfGames.Text) ;
for j := 1 to iSimulations do
begin

// Select two random cards

// Calculate the value of the two cards

// Categorise the cards based on their values
end;

https://www.youtube.com/
watch?v=pDEXObTMHTs

e Once you have your game loop, select two cards inside the loop. The code below
shows how these cards are selected.

Selecting two cards

iRandoml := Random(52);

iRandom2 := Random(52) ;

while iRandoml = iRandom2 do
iRandom2 := Random(52) ;

aSelectedCard[1]
aSelectedCard[2]

1Cards[iRandoml] ;
1Cards[iRandom2] ;

e The code starts by selecting two random numbers between 0 and 51. These
numbers will be used to draw cards from the list of cards. Since the same card
cannot be drawn twice, a WHILE-DO loop will repeat until iRandom1 and iRandom2
have different values. Once you have two unique integers, they are used to select
two cards from the iCards list and assign it to the aSelectedCard[7] and
aSelectedCard[2] array elements.

e The cards selected at this stage have a value of 1 (ace) to 13 (king). However, not all
cards have the same value as their number. Specifically, cards with the number 11,
12 and 13 (jack, queen and king) have a value of 10, while cards with the number 1
(ace) have a value of 11.

e The next step is to store the values of the two selected cards.

Selecting two cards

iRandoml := Random(52) ;

iRandom2 := Random(52);

while iRandoml = iRandom2 do
iRandom2 := Random(52) ;

aSelectedCard[1] := 1Cards[iRandoml];
aSelectedCard[2] := 1Cards[iRandom2];

e |n this code, a FOR-loop is used to assign values to both the selected cards. Inside
the FOR-loop, a case statement looks at the selected card’s number and assigns an
appropriate value to the aCardValue[1] and aCaradValue[2] array elements. Once the
values for the two cards has been assigned, they can be added together to obtain
the total value.

e At this point, you know the value of both the cards as well as the specific cards that
were selected. The last two steps is to assign the cards to a category before
displaying the values for the categories in your Ul.

IV/Ol INFORMATION TECHNOLOGY | GRADE 10 |

m Monte Carlo simulator continued

Categorising the cards
Case iTotalValue of

1..15 iBelowl6 := iBelowl6 + 1;
16 iExactlyl6é := iExactlyl6 + 1;
17..20 iAbovel6 := iAbovel6 + 1;
21 iExactly2l := iExactly2l + 1;

End;

// Checks if the cards have the same number

if aSelectedCard[1l] =

iSameNumber :=

aSelectedCard[2] then

iSameNumber + 1;

// Checks if an ace and jack were selected

if ((aSelectedCard[1]
((aSelectedCard[2] =
iBlackJack :=

= 1) and (aSelectedCard[2]

1) and (aSelectedCard[1l] =
iBlackJack + 1;

11)) or

11)) then

e The CASE statement at the start of the code snippet looks at the total card value and increments the category
variable based on this value. Once this is done, a separate IF-THEN statement is used to check if the two
selected cards have the same number. Finally, an IF-THEN statement is used to check if one of the cards is an
ace (1) and the other a jack (11) in order to increment the iBlackJack variable. This is the last step that occurs

inside the loop.

e Once outside of the loop, all the values are converted to strings and written to the labels.

Writing the values
1blTotalGames.Caption
1blExactly21.Caption
1b1lAbovel6.Caption :=
1blExactlyl6.Caption
1b1lBelowl6.Caption :=
1b1lBlackJack.Caption
1blSameNumber.Caption

:= IntToStr(iSimulations) ;

:= IntToStr(iExactly21);

IntToStr (iAbovelb) ;

:= IntToStr(iExactlyl6);

IntToStr(iBelowl6) ;

:= IntToStr(iBlackJack) ;

:= IntToStr (iSameNumber) ;

e By running this application, you will see that your chances of picking up a BlackJack is roughly 1.2% (or 12 000

/1000 000)!

@ Monte Carlo simulstions

Total games
1000000

Cxactly 21
48113

Above 16
300344

Blackjack
11932

o X
Cxactly 16 Below 16
76728 570272

Same number

58752

Number of games: [1000000 |

Run Smulations

ANNEXURE F | Enrichment

171

Glossary

abstracting to create an object and assign it to an
object name

access specifiers is a defining code element that
can be determine which elements of a program
are allowed to access a specific variable or other
piece of data

append to open an existing file for writing, set the
file pointer to the end of the file and allows you
to add data to the file

append to add an empty row to the end of your
database table

array is a data structure that store a set values
(elements) of the same type liked to a single
variable name

assume supposed to be the case, without proof

attributes the data fields of the class

behaviour the code that provides the interaction with
the attributes

binary search is an algorithm used in computer
science to locate a specified value (key) within
an array

bubble sort to compare adjacent elements

Caesar cipher a substitution cipher on which each
letter in plaintext is ‘shifted’ a certain number of
places down the alphabet

calculated field the field that is calculated each
time you run your query

Ceil to round a real number up to the highest
integer value

CHR to return the corresponding character of an
ASCII code

circular dependency to cause an application to
crash

CompareText to compare two strings for equality,
ignoring case

concatenates to joins strings together into one
result string

conditional to put its condition first before
executing the looping back

data module a sealed, removable storage module
containing magnetic disks and their associated
access arms and read/write heads

data type a particular kind of data item, as defined
by the value it can take, the programming
language used, or the operations that can be
performed on it.

DEC to decrement an ordinal type variable

decremental the act or process of decreasing or
becoming gradually less

Delete to delete a number of characters from a
string starting from a start position

V728 INFORMATION TECHNOLOGY | GRADE 11 |

delimiters to show the start and ends of individual
pieces of data

dynamic instantiation when a component or
object is created during run-time

encapsulation the grouping of attributes and
behaviour in one entity

encrypted message to encode information to
prevent anyone other than its intended recipient
from viewing it

end of file <eof> to indicate the end of a file when
the file is saved

end of line <eoln> to indicate the end of the line
when the [Enter] button is pressed

Entity Relationship Diagram to show the
relationships of entity sets stored in a database

event an occurrence of something

exception is generally an error condition or event
that interrupts the flow of your program

Exception Handling a way to prevent a program
from crashing when a file does not exist

FileExists to determine whether a file exists or not

first argument is a string that holds instructions for
formatting

Floor to round a real number down to the lowest
integer value

formal parameter to declare variable(s) next to the
procedure name

Frac to return the decimal part of a real number

function the operation of something in a particular
way

global is a programming language construct, a
variable that is declared outside and function
and is accessible to all the functions throughout
the program

homogenous elements of the same type

INC to increment the ordinal type variable passed
toit

incremental relating to or denoting an increase or
addition

independent to run on its own

index the position of the element in an array

inner loop the inner part of a nested loop

Insert to insert one string into another string

insert to add an empty row at the current position
of your database table

instance an example or single occurrence of
something

instances of the class a data type that describes
the attributes and behaviour of the object to be
model electronically

instantiate represent as or by an instant

linear search is a process that checks every
element in the list sequentially until the desired
element is found

local variable variables that have a local scope

logical file is a variable (in RAM) that points to the
physical file on your storage medium

LowerCase to converts uppercase characters in a
string to lowercase

Luhn algorithm is a simple checksum formula used
t validate a variety of identification numbers,
such as credit card numbers, IMEI numbers, and
Canadian Social Insurance Numbers

method overloading to have more than one
method with the same name

method overloading to have more than one
method with the same name

method signature is the number of arguments and
their data type

method signature to name a method and its formal
parameters list

methods predefined instructions

naming convention to name things (generally
agreed scheme)

non-local is a variable that is not defined within the
local scope

null to represent an empty value

Object-Oriented Programming (OOP) refers to a
type of computer programming (software design)
in which programmers define not only the data
type of a data structure, but also the types of
operations (functions) that can be applied to the
data structure

ORD to return the ordinal value of a character

outer loop the outer part of a nested loop

physical file to name an external file name found
on a storage device and contains the actual data

Pi is a predefined constant that returns a real
number giving a useful approximation of the
value Pi

Pos to return to the start position of one string
within another string as an integer

post command to permanently save the values to
the database table

POWER to raise a base to a power and returns a
real answer

procedure an official way of doing something
properties the components or building blocks

Random to generate a random number from O to
less than 1

RandomRange to generate a random integer
number from Num1 to one less than Num2

related information information belonging in the
same group

relational database a database structured to
recognise relations between stored items of
information

reusability is an important OOP principle

Round to round a real number to an integer value

second argument holds the values that needs to
be converted into a formatted string

selection sort to select the element that should
go in each array position either in ascending or
descending order sequence

SETLENGTH to change the size of a string

sorted to sort an element in numerical order

SQRT to return the square root of a number

step through to step through means that you are
working through a program line by line

STR to convert an integer or real number into a
string, with optional basic formatting

Trunc to remove or chop off the decimal part of
the real number. It returns an integer after the
truncation

unambiguous not open to more than one
interpretation

Upcase to convert a single letter character to
uppercase

UpperCase to converts lowercase characters in a
string to uppercase

user-defined is methods written by programmers
themselves

VAL to convert a string to a numeric value

validate to try and lessen the number of errors
during the process of data input in programming

value parameter when a procedure is called,
memory locations are created for each of
the formal parameters and the values of the
arguments are assigned to the corresponding
formal parameters. Changes made to a value
parameter will not affect its corresponding
argument. When the procedure is exited, the
memory locations of the formal parameters ‘die’
away

INFORMATION TECHNOLOGY | GRADE 11 | Glossary WA}

T ——
ANNEXURES 7/

iPZ3 (NFORMATION TECHNOLOGY | GRADE 11 | Practical Book

